基于内容的图像检索中使用稀疏投影的视觉特征降维

Romain Negrel, David Picard, P. Gosselin
{"title":"基于内容的图像检索中使用稀疏投影的视觉特征降维","authors":"Romain Negrel, David Picard, P. Gosselin","doi":"10.1109/ICIP.2014.7025444","DOIUrl":null,"url":null,"abstract":"In web-scale image retrieval, the most effective strategy is to aggregate local descriptors into a high dimensionality signature and then reduce it to a small dimensionality. Thanks to this strategy, web-scale image databases can be represented with small index and explored using fast visual similarities. However, the computation of this index has a very high complexity, because of the high dimensionality of signature projectors. In this work, we propose a new efficient method to greatly reduce the signature dimensionality with low computational and storage costs. Our method is based on the linear projection of the signature onto a small subspace using a sparse projection matrix. We report several experimental results on two standard datasets (Inria Holidays and Oxford) and with 100k image distractors. We show that our method reduces both the projectors storage cost and the computational cost of projection step while incurring a very slight loss in mAP (mean Average Precision) performance of these computed signatures.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"53 76 1","pages":"2192-2196"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Dimensionality reduction of visual features using sparse projectors for content-based image retrieval\",\"authors\":\"Romain Negrel, David Picard, P. Gosselin\",\"doi\":\"10.1109/ICIP.2014.7025444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In web-scale image retrieval, the most effective strategy is to aggregate local descriptors into a high dimensionality signature and then reduce it to a small dimensionality. Thanks to this strategy, web-scale image databases can be represented with small index and explored using fast visual similarities. However, the computation of this index has a very high complexity, because of the high dimensionality of signature projectors. In this work, we propose a new efficient method to greatly reduce the signature dimensionality with low computational and storage costs. Our method is based on the linear projection of the signature onto a small subspace using a sparse projection matrix. We report several experimental results on two standard datasets (Inria Holidays and Oxford) and with 100k image distractors. We show that our method reduces both the projectors storage cost and the computational cost of projection step while incurring a very slight loss in mAP (mean Average Precision) performance of these computed signatures.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"53 76 1\",\"pages\":\"2192-2196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在网络规模的图像检索中,最有效的策略是将局部描述符聚合成一个高维特征,然后降维到一个小维特征。由于这种策略,网络规模的图像数据库可以用小索引表示,并使用快速的视觉相似性进行探索。然而,由于特征投影的高维性,该指标的计算具有很高的复杂度。在这项工作中,我们提出了一种新的有效方法,可以在低计算和低存储成本的情况下大大降低签名维数。我们的方法是基于使用稀疏投影矩阵将签名线性投影到一个小的子空间上。我们报告了两个标准数据集(Inria Holidays和Oxford)和100k图像干扰物的实验结果。我们表明,我们的方法降低了投影仪的存储成本和投影步骤的计算成本,而这些计算签名的mAP(平均平均精度)性能损失很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dimensionality reduction of visual features using sparse projectors for content-based image retrieval
In web-scale image retrieval, the most effective strategy is to aggregate local descriptors into a high dimensionality signature and then reduce it to a small dimensionality. Thanks to this strategy, web-scale image databases can be represented with small index and explored using fast visual similarities. However, the computation of this index has a very high complexity, because of the high dimensionality of signature projectors. In this work, we propose a new efficient method to greatly reduce the signature dimensionality with low computational and storage costs. Our method is based on the linear projection of the signature onto a small subspace using a sparse projection matrix. We report several experimental results on two standard datasets (Inria Holidays and Oxford) and with 100k image distractors. We show that our method reduces both the projectors storage cost and the computational cost of projection step while incurring a very slight loss in mAP (mean Average Precision) performance of these computed signatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1