有效地生成现实的社交媒体时间线结构

Chengcheng Yu, Fan Xia, Weining Qian, Aoying Zhou, Jianlong Chang
{"title":"有效地生成现实的社交媒体时间线结构","authors":"Chengcheng Yu, Fan Xia, Weining Qian, Aoying Zhou, Jianlong Chang","doi":"10.1145/2618243.2618272","DOIUrl":null,"url":null,"abstract":"A framework of synthetic data generator to generate social media timeline structures is proposed in this paper, which is useful for benchmarking query processing over social media data, and validating hypothesis over users' behavior. It is flexible to generate synthetic data with different distributions. With the help of its asynchronized parallel processing model and delayed update strategy, it is efficient to feed out timeline structure with high throughput. We show in experiments that our method can generate realistic social media timeline structures efficiently.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"15 1","pages":"45:1-45:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On efficiently generating realistic social media timeline structures\",\"authors\":\"Chengcheng Yu, Fan Xia, Weining Qian, Aoying Zhou, Jianlong Chang\",\"doi\":\"10.1145/2618243.2618272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A framework of synthetic data generator to generate social media timeline structures is proposed in this paper, which is useful for benchmarking query processing over social media data, and validating hypothesis over users' behavior. It is flexible to generate synthetic data with different distributions. With the help of its asynchronized parallel processing model and delayed update strategy, it is efficient to feed out timeline structure with high throughput. We show in experiments that our method can generate realistic social media timeline structures efficiently.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"15 1\",\"pages\":\"45:1-45:4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2618243.2618272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个生成社交媒体时间线结构的合成数据生成器框架,该框架可用于对社交媒体数据的查询处理进行基准测试,并验证对用户行为的假设。它可以灵活地生成具有不同分布的合成数据。利用异步并行处理模型和延迟更新策略,可以有效地输出高吞吐量的时间线结构。实验表明,我们的方法可以有效地生成真实的社交媒体时间线结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On efficiently generating realistic social media timeline structures
A framework of synthetic data generator to generate social media timeline structures is proposed in this paper, which is useful for benchmarking query processing over social media data, and validating hypothesis over users' behavior. It is flexible to generate synthetic data with different distributions. With the help of its asynchronized parallel processing model and delayed update strategy, it is efficient to feed out timeline structure with high throughput. We show in experiments that our method can generate realistic social media timeline structures efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1