{"title":"在大型强子对撞机能量下重离子碰撞的时空图像和观测","authors":"Y. Sinyukov, V. Shapoval, M. Adzhymambetov","doi":"10.15407/jnpae2023.02.087","DOIUrl":null,"url":null,"abstract":"In the present work, we combine and systemize the results of our recent research activity aiming to reveal the spatiotemporal structure of those extremely hot, dense, and rapidly expanding systems, which form in ultrarelativistic heavy ion collisions, as well as to reproduce in computer simulations the experimentally measured bulk observables. The latter include hadronic yields, particle number ratios, transverse momentum spectra, νn coefficients, and the femtoscopy scales, calculated for different collision energies within the integrated hydrokinetic model. We investigate how our simulation results depend on the model tuning, in particular, the utilized equation of state for quark-gluon matter and discuss the effect of the post-hydrodynamic stage of the system's evolution on the observables formation.","PeriodicalId":42588,"journal":{"name":"Nuclear Physics and Atomic Energy","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-time picture and observables in heavy ion collisions at the Large Hadron Collider energies\",\"authors\":\"Y. Sinyukov, V. Shapoval, M. Adzhymambetov\",\"doi\":\"10.15407/jnpae2023.02.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, we combine and systemize the results of our recent research activity aiming to reveal the spatiotemporal structure of those extremely hot, dense, and rapidly expanding systems, which form in ultrarelativistic heavy ion collisions, as well as to reproduce in computer simulations the experimentally measured bulk observables. The latter include hadronic yields, particle number ratios, transverse momentum spectra, νn coefficients, and the femtoscopy scales, calculated for different collision energies within the integrated hydrokinetic model. We investigate how our simulation results depend on the model tuning, in particular, the utilized equation of state for quark-gluon matter and discuss the effect of the post-hydrodynamic stage of the system's evolution on the observables formation.\",\"PeriodicalId\":42588,\"journal\":{\"name\":\"Nuclear Physics and Atomic Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics and Atomic Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/jnpae2023.02.087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics and Atomic Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/jnpae2023.02.087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Space-time picture and observables in heavy ion collisions at the Large Hadron Collider energies
In the present work, we combine and systemize the results of our recent research activity aiming to reveal the spatiotemporal structure of those extremely hot, dense, and rapidly expanding systems, which form in ultrarelativistic heavy ion collisions, as well as to reproduce in computer simulations the experimentally measured bulk observables. The latter include hadronic yields, particle number ratios, transverse momentum spectra, νn coefficients, and the femtoscopy scales, calculated for different collision energies within the integrated hydrokinetic model. We investigate how our simulation results depend on the model tuning, in particular, the utilized equation of state for quark-gluon matter and discuss the effect of the post-hydrodynamic stage of the system's evolution on the observables formation.
期刊介绍:
The journal Nuclear Physics and Atomic Energy presents the publications on Nuclear Physics, Atomic Energy, Radiation Physics, Radioecology, Engineering and Methods of Experiment. The journal includes peer-reviewed articles which are completed works containing new results of theoretical and experimental researches and are of interest for the scientists, postgraduate students, engineers and for the senior students.