基于OpenCL的图像恢复信念传播方法的GPU实现

P. Ravibabu, K. S. Rao, Mallesham Dasari
{"title":"基于OpenCL的图像恢复信念传播方法的GPU实现","authors":"P. Ravibabu, K. S. Rao, Mallesham Dasari","doi":"10.1109/ICCCT2.2014.7066721","DOIUrl":null,"url":null,"abstract":"The image processing applications involve huge amount of computational complexity as the operations are carried out on each pixel of the image. The General Purpose computations that are data independent can run on Graphics Processing Units (GPU) to enable speedup in running time due to high level of parallelism. Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) programming environments are well known parallel programming languages for GPU-based Single Instruction Multiple Data (SIMD) architectures. This paper presents parallel implementation of Belief Propagation (BP) algorithm for Image Restoration on GPU using OpenCL parallel programming environment. The experimental results shows that, GPU-based implementation improves the running time of BP for image restoration when compared to sequential implmentation of BP. The best and average running time of BP algorithm on GPUs with 14 multiprocessors (48 cores) is 0.81ms and 1.46ms when tested on various benchmark images with CIF and VGA resolution.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GPU implementation of Belief Propagation method for Image Restoration using OpenCL\",\"authors\":\"P. Ravibabu, K. S. Rao, Mallesham Dasari\",\"doi\":\"10.1109/ICCCT2.2014.7066721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image processing applications involve huge amount of computational complexity as the operations are carried out on each pixel of the image. The General Purpose computations that are data independent can run on Graphics Processing Units (GPU) to enable speedup in running time due to high level of parallelism. Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) programming environments are well known parallel programming languages for GPU-based Single Instruction Multiple Data (SIMD) architectures. This paper presents parallel implementation of Belief Propagation (BP) algorithm for Image Restoration on GPU using OpenCL parallel programming environment. The experimental results shows that, GPU-based implementation improves the running time of BP for image restoration when compared to sequential implmentation of BP. The best and average running time of BP algorithm on GPUs with 14 multiprocessors (48 cores) is 0.81ms and 1.46ms when tested on various benchmark images with CIF and VGA resolution.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT2.2014.7066721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2014.7066721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像处理应用涉及大量的计算复杂性,因为操作是在图像的每个像素上进行的。与数据无关的通用计算可以在图形处理单元(GPU)上运行,从而由于高度并行性而加快运行时间。计算统一设备架构(CUDA)和开放计算语言(OpenCL)编程环境是众所周知的基于gpu的单指令多数据(SIMD)架构的并行编程语言。本文利用OpenCL并行编程环境在GPU上并行实现图像恢复中的BP算法。实验结果表明,与序列BP相比,基于gpu的BP算法提高了BP图像恢复的运行时间。在CIF和VGA分辨率的各种基准图像上测试,BP算法在14个多处理器(48核)gpu上的最佳和平均运行时间分别为0.81ms和1.46ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU implementation of Belief Propagation method for Image Restoration using OpenCL
The image processing applications involve huge amount of computational complexity as the operations are carried out on each pixel of the image. The General Purpose computations that are data independent can run on Graphics Processing Units (GPU) to enable speedup in running time due to high level of parallelism. Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) programming environments are well known parallel programming languages for GPU-based Single Instruction Multiple Data (SIMD) architectures. This paper presents parallel implementation of Belief Propagation (BP) algorithm for Image Restoration on GPU using OpenCL parallel programming environment. The experimental results shows that, GPU-based implementation improves the running time of BP for image restoration when compared to sequential implmentation of BP. The best and average running time of BP algorithm on GPUs with 14 multiprocessors (48 cores) is 0.81ms and 1.46ms when tested on various benchmark images with CIF and VGA resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1