A. Ayala, J. Hern'andez, L. Hern'andez, R. Farias, R. Zamora
{"title":"夸克线性西格玛模型中中性介子质量对磁场的依赖:强场情况","authors":"A. Ayala, J. Hern'andez, L. Hern'andez, R. Farias, R. Zamora","doi":"10.1103/PHYSREVD.103.054038","DOIUrl":null,"url":null,"abstract":"We use the linear sigma model with quarks to find the magnetic field-induced modifications to the neutral pion mass at one-loop level. The magnetic field effects are introduced by using charged particle propagators in the presence of a magnetic background in the strong field regime. We show that when accounting for the effects of the magnetic field on the model couplings, the vacuum sigma field and the neutral pion self-energy, the neutral pion mass decreases monotonically as a function of the field strength. We find an excellent qualitative and quantitative agreement with recent lattice QCD calculations, reproducing the monotonically decreasing trend with the field strength as well as the decrease when lattice data approaches the physical vacuum pion mass from larger values.","PeriodicalId":8457,"journal":{"name":"arXiv: High Energy Physics - Phenomenology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Magnetic field dependence of the neutral pion mass in the linear sigma model with quarks: The strong field case\",\"authors\":\"A. Ayala, J. Hern'andez, L. Hern'andez, R. Farias, R. Zamora\",\"doi\":\"10.1103/PHYSREVD.103.054038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the linear sigma model with quarks to find the magnetic field-induced modifications to the neutral pion mass at one-loop level. The magnetic field effects are introduced by using charged particle propagators in the presence of a magnetic background in the strong field regime. We show that when accounting for the effects of the magnetic field on the model couplings, the vacuum sigma field and the neutral pion self-energy, the neutral pion mass decreases monotonically as a function of the field strength. We find an excellent qualitative and quantitative agreement with recent lattice QCD calculations, reproducing the monotonically decreasing trend with the field strength as well as the decrease when lattice data approaches the physical vacuum pion mass from larger values.\",\"PeriodicalId\":8457,\"journal\":{\"name\":\"arXiv: High Energy Physics - Phenomenology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Phenomenology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.054038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.054038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic field dependence of the neutral pion mass in the linear sigma model with quarks: The strong field case
We use the linear sigma model with quarks to find the magnetic field-induced modifications to the neutral pion mass at one-loop level. The magnetic field effects are introduced by using charged particle propagators in the presence of a magnetic background in the strong field regime. We show that when accounting for the effects of the magnetic field on the model couplings, the vacuum sigma field and the neutral pion self-energy, the neutral pion mass decreases monotonically as a function of the field strength. We find an excellent qualitative and quantitative agreement with recent lattice QCD calculations, reproducing the monotonically decreasing trend with the field strength as well as the decrease when lattice data approaches the physical vacuum pion mass from larger values.