基于adrc的三相四开关逆变器永磁同步电机模型预测电流控制

Qingfang Teng, Guo-fei Li, Jianguo Zhu, Youguang Guo, Shuyuan Li
{"title":"基于adrc的三相四开关逆变器永磁同步电机模型预测电流控制","authors":"Qingfang Teng, Guo-fei Li, Jianguo Zhu, Youguang Guo, Shuyuan Li","doi":"10.1109/IPEMC.2016.7512729","DOIUrl":null,"url":null,"abstract":"A novel automatic disturbances rejection control (ADRC)-based model predictive current control (MPCC) strategy is developed for permanent magnet synchronous motors (PMSMs) fed by three-phase four-switch inverters, an after-fault-topology for fault-tolerant three-phase six-switch inverters. The mathematical model of a PMSM fed by a three-phase four-switch inverter is built firstly. Then the ADRC and MPCC are respectively designed, with the former being used to realize disturbance estimation and disturbance compensation while the latter being used to reduce stator current ripple and improve the quality of the torque and speed control. The resultant ADRC-based MPCC PMSM fed by an unhealthy inverter has fault-tolerant effective with dynamical performance very close to an ADRC-based MPCC PMSM fed by a healthy inverter. On the other hand, compared with PI-based MPCC PMSM fed by an unhealthy inverter, it possesses better dynamical response behavior and stronger robustness as well as smaller THD index of three-phase stator current in the presence of variation of load torque. The simulation results validate the feasibility and effectiveness of the proposed scheme.","PeriodicalId":6857,"journal":{"name":"2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)","volume":"22 1","pages":"2724-2731"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ADRC-based model predictive current control for PMSMs fed by three-phase four-switch inverters\",\"authors\":\"Qingfang Teng, Guo-fei Li, Jianguo Zhu, Youguang Guo, Shuyuan Li\",\"doi\":\"10.1109/IPEMC.2016.7512729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel automatic disturbances rejection control (ADRC)-based model predictive current control (MPCC) strategy is developed for permanent magnet synchronous motors (PMSMs) fed by three-phase four-switch inverters, an after-fault-topology for fault-tolerant three-phase six-switch inverters. The mathematical model of a PMSM fed by a three-phase four-switch inverter is built firstly. Then the ADRC and MPCC are respectively designed, with the former being used to realize disturbance estimation and disturbance compensation while the latter being used to reduce stator current ripple and improve the quality of the torque and speed control. The resultant ADRC-based MPCC PMSM fed by an unhealthy inverter has fault-tolerant effective with dynamical performance very close to an ADRC-based MPCC PMSM fed by a healthy inverter. On the other hand, compared with PI-based MPCC PMSM fed by an unhealthy inverter, it possesses better dynamical response behavior and stronger robustness as well as smaller THD index of three-phase stator current in the presence of variation of load torque. The simulation results validate the feasibility and effectiveness of the proposed scheme.\",\"PeriodicalId\":6857,\"journal\":{\"name\":\"2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)\",\"volume\":\"22 1\",\"pages\":\"2724-2731\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEMC.2016.7512729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2016.7512729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对三相四开关逆变器馈电的永磁同步电动机,提出了一种基于自抗扰控制(ADRC)的模型预测电流控制(MPCC)策略,该策略是容错三相六开关逆变器的故障后拓扑结构。首先建立了由三相四开关逆变器供电的永磁同步电动机的数学模型。然后分别设计了ADRC和MPCC,前者用于干扰估计和干扰补偿,后者用于减小定子电流纹波,提高转矩和转速控制质量。由非健康逆变器供电的基于adrc的MPCC永磁同步电机具有容错效果,其动态性能非常接近健康逆变器供电的基于adrc的MPCC永磁同步电机。另一方面,与非健康逆变器驱动的基于pi的MPCC永磁同步电动机相比,在负载转矩变化的情况下,它具有更好的动态响应行为和更强的鲁棒性,并且具有更小的三相定子电流THD指标。仿真结果验证了该方案的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADRC-based model predictive current control for PMSMs fed by three-phase four-switch inverters
A novel automatic disturbances rejection control (ADRC)-based model predictive current control (MPCC) strategy is developed for permanent magnet synchronous motors (PMSMs) fed by three-phase four-switch inverters, an after-fault-topology for fault-tolerant three-phase six-switch inverters. The mathematical model of a PMSM fed by a three-phase four-switch inverter is built firstly. Then the ADRC and MPCC are respectively designed, with the former being used to realize disturbance estimation and disturbance compensation while the latter being used to reduce stator current ripple and improve the quality of the torque and speed control. The resultant ADRC-based MPCC PMSM fed by an unhealthy inverter has fault-tolerant effective with dynamical performance very close to an ADRC-based MPCC PMSM fed by a healthy inverter. On the other hand, compared with PI-based MPCC PMSM fed by an unhealthy inverter, it possesses better dynamical response behavior and stronger robustness as well as smaller THD index of three-phase stator current in the presence of variation of load torque. The simulation results validate the feasibility and effectiveness of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Transformer reliability and efficiency through modularity Passive regenerative snubber cell applied to isolated DCM SEPIC converter Optimal power scheduling for an islanded hybrid microgrid Analysis of power losses in power MOSFET based stacked polyphase bridges converters Performance evaluation of a non-isolated bidirectional three-port power converter for energy storage applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1