交叉上市股指期货的套期保值效果

IF 1 Q3 ECONOMICS Global Economy Journal Pub Date : 2019-09-04 DOI:10.1142/S2194565919500118
K. K. Kumar, S. Bose
{"title":"交叉上市股指期货的套期保值效果","authors":"K. K. Kumar, S. Bose","doi":"10.1142/S2194565919500118","DOIUrl":null,"url":null,"abstract":"This paper investigates the hedging effectiveness of cross-listed Nifty Index futures and compares the performance of constant and dynamic optimal hedging strategies. We use daily data of Nifty index traded on the National Stock Exchange (NSE), India and cross-listed Nifty futures traded on the Singapore Stock Exchange (SGX) for a period of six years from July 15, 2010 to July 15, 2016. Various competing forms of Multivariate Generalised Autoregressive Conditional Heteroscedasticity (MGARCH) models, such as Constant Conditional Correlation (CCC) and Dynamic Conditional Correlation (DCC), have been employed to capture the time-varying volatility. The results clearly depict that dynamic hedge ratios outperform traditional constant hedge ratios with the DCC–GARCH model being the most efficient with maximum variance reduction from the unhedged portfolio.","PeriodicalId":44015,"journal":{"name":"Global Economy Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"HEDGING EFFECTIVENESS OF CROSS-LISTED NIFTY INDEX FUTURES\",\"authors\":\"K. K. Kumar, S. Bose\",\"doi\":\"10.1142/S2194565919500118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the hedging effectiveness of cross-listed Nifty Index futures and compares the performance of constant and dynamic optimal hedging strategies. We use daily data of Nifty index traded on the National Stock Exchange (NSE), India and cross-listed Nifty futures traded on the Singapore Stock Exchange (SGX) for a period of six years from July 15, 2010 to July 15, 2016. Various competing forms of Multivariate Generalised Autoregressive Conditional Heteroscedasticity (MGARCH) models, such as Constant Conditional Correlation (CCC) and Dynamic Conditional Correlation (DCC), have been employed to capture the time-varying volatility. The results clearly depict that dynamic hedge ratios outperform traditional constant hedge ratios with the DCC–GARCH model being the most efficient with maximum variance reduction from the unhedged portfolio.\",\"PeriodicalId\":44015,\"journal\":{\"name\":\"Global Economy Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Economy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2194565919500118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Economy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2194565919500118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了交叉上市的Nifty指数期货的套期保值效果,并比较了不变和动态最优套期保值策略的效果。我们使用了2010年7月15日至2016年7月15日在印度国家证券交易所(NSE)交易的Nifty指数和在新加坡证券交易所(SGX)交叉上市的Nifty期货的每日数据,为期六年。各种竞争形式的多元广义自回归条件异方差(MGARCH)模型,如恒定条件相关(CCC)和动态条件相关(DCC),已被用于捕获时变波动率。结果清楚地描述了动态对冲比率优于传统的恒定对冲比率,其中DCC-GARCH模型是最有效的,与未对冲的投资组合相比,方差减少最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HEDGING EFFECTIVENESS OF CROSS-LISTED NIFTY INDEX FUTURES
This paper investigates the hedging effectiveness of cross-listed Nifty Index futures and compares the performance of constant and dynamic optimal hedging strategies. We use daily data of Nifty index traded on the National Stock Exchange (NSE), India and cross-listed Nifty futures traded on the Singapore Stock Exchange (SGX) for a period of six years from July 15, 2010 to July 15, 2016. Various competing forms of Multivariate Generalised Autoregressive Conditional Heteroscedasticity (MGARCH) models, such as Constant Conditional Correlation (CCC) and Dynamic Conditional Correlation (DCC), have been employed to capture the time-varying volatility. The results clearly depict that dynamic hedge ratios outperform traditional constant hedge ratios with the DCC–GARCH model being the most efficient with maximum variance reduction from the unhedged portfolio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
4
期刊介绍: The GEJ seeks to publish original and innovative research, as well as novel analysis, relating to the global economy. While its main emphasis is economic, the GEJ is a multi-disciplinary journal. The GEJ''s contents mirror the diverse interests and approaches of scholars involved with the international dimensions of business, economics, finance, history, law, marketing, management, political science, and related areas. The GEJ also welcomes scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations. One over-arching theme that unites IT&FA members and gives focus to this journal is the complex globalization process, involving flows of goods and services, money, people, and information.
期刊最新文献
THE IMPACT OF TECHNOLOGICAL PROGRESS ON THE REAL SECTOR IN SUB-SAHARAN AFRICA NEWS AND INFORMATION RIGIDITY: FURTHER EVIDENCE FROM GDP GROWTH FORECASTS THE ECONOMY IS NOT FLAT: THE TECHNOLOGY GRADIENT IN THE MASS MARKET ECONOMY THE IMPACTS OF GLOBAL ECONOMIC SANCTIONS ON CORRUPTION: A GLOBAL ANALYSIS OIL PRICES, EXCHANGE RATES, AND THE TRADE BALANCE: EVIDENCE FROM KAZAKHSTAN AND RUSSIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1