N. P. Gaire, Z. Fan, Santosh K. Shah, U. Thapa, M. Rokaya
{"title":"喜马拉雅中部Karnali Humla的冬季温度年轮记录:对最近变暖趋势的229年视角","authors":"N. P. Gaire, Z. Fan, Santosh K. Shah, U. Thapa, M. Rokaya","doi":"10.1080/04353676.2020.1751446","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Tree rings are widely used to reconstruct past climates in regions where observational records of climate are short. In this study, we developed a 294 years-long (1718–2011 CE) ring-width chronology of the Himalayan Silver fir (Abies spectabilis (D.Don, Spach)) from Humla district in western Nepal to reconstruct winter minimum temperature for the remote region of central Himalaya where instrumental records are limited to past three or four decades. Ring-width chronology of the Himalayan Silver fir showed strongest and significant positive correlation with minimum winter temperature prior to the growing season. Based on this relationship, we reconstructed the winter season (previous October–current February) minimum temperature for western Nepal covering the period of 1780–2008 CE. Our reconstruction showed that winter minimum temperature is continuously increasing since the early twentieth century with unprecedented rapid warming in the latter half. The cold episodes in the reconstruction coincided with the major volcanic eruptions in the Northern Hemisphere and tropical regions. The spectral analysis using Multi-Taper Method revealed that the winter temperature in the north-western Himalaya has short- to medium-term periodicities of 2–3, 5.8–6.2, 7.9–8.2, 39–46 and 56–73 years, which suggest possible teleconnections with ENSO (El-Nino Southern Oscillation) and AMO (Atlantic Multidecadal Oscillation).","PeriodicalId":55112,"journal":{"name":"Geografiska Annaler Series A-Physical Geography","volume":"33 1","pages":"297 - 316"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Tree-ring record of winter temperature from Humla, Karnali, in central Himalaya: a 229 years-long perspective for recent warming trend\",\"authors\":\"N. P. Gaire, Z. Fan, Santosh K. Shah, U. Thapa, M. Rokaya\",\"doi\":\"10.1080/04353676.2020.1751446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n Tree rings are widely used to reconstruct past climates in regions where observational records of climate are short. In this study, we developed a 294 years-long (1718–2011 CE) ring-width chronology of the Himalayan Silver fir (Abies spectabilis (D.Don, Spach)) from Humla district in western Nepal to reconstruct winter minimum temperature for the remote region of central Himalaya where instrumental records are limited to past three or four decades. Ring-width chronology of the Himalayan Silver fir showed strongest and significant positive correlation with minimum winter temperature prior to the growing season. Based on this relationship, we reconstructed the winter season (previous October–current February) minimum temperature for western Nepal covering the period of 1780–2008 CE. Our reconstruction showed that winter minimum temperature is continuously increasing since the early twentieth century with unprecedented rapid warming in the latter half. The cold episodes in the reconstruction coincided with the major volcanic eruptions in the Northern Hemisphere and tropical regions. The spectral analysis using Multi-Taper Method revealed that the winter temperature in the north-western Himalaya has short- to medium-term periodicities of 2–3, 5.8–6.2, 7.9–8.2, 39–46 and 56–73 years, which suggest possible teleconnections with ENSO (El-Nino Southern Oscillation) and AMO (Atlantic Multidecadal Oscillation).\",\"PeriodicalId\":55112,\"journal\":{\"name\":\"Geografiska Annaler Series A-Physical Geography\",\"volume\":\"33 1\",\"pages\":\"297 - 316\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geografiska Annaler Series A-Physical Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/04353676.2020.1751446\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografiska Annaler Series A-Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/04353676.2020.1751446","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Tree-ring record of winter temperature from Humla, Karnali, in central Himalaya: a 229 years-long perspective for recent warming trend
ABSTRACT
Tree rings are widely used to reconstruct past climates in regions where observational records of climate are short. In this study, we developed a 294 years-long (1718–2011 CE) ring-width chronology of the Himalayan Silver fir (Abies spectabilis (D.Don, Spach)) from Humla district in western Nepal to reconstruct winter minimum temperature for the remote region of central Himalaya where instrumental records are limited to past three or four decades. Ring-width chronology of the Himalayan Silver fir showed strongest and significant positive correlation with minimum winter temperature prior to the growing season. Based on this relationship, we reconstructed the winter season (previous October–current February) minimum temperature for western Nepal covering the period of 1780–2008 CE. Our reconstruction showed that winter minimum temperature is continuously increasing since the early twentieth century with unprecedented rapid warming in the latter half. The cold episodes in the reconstruction coincided with the major volcanic eruptions in the Northern Hemisphere and tropical regions. The spectral analysis using Multi-Taper Method revealed that the winter temperature in the north-western Himalaya has short- to medium-term periodicities of 2–3, 5.8–6.2, 7.9–8.2, 39–46 and 56–73 years, which suggest possible teleconnections with ENSO (El-Nino Southern Oscillation) and AMO (Atlantic Multidecadal Oscillation).
期刊介绍:
Geografiska Annaler: Series A, Physical Geography publishes original research in the field of Physical Geography with special emphasis on cold regions/high latitude, high altitude processes, landforms and environmental change, past, present and future.
The journal primarily promotes dissemination of regular research by publishing research-based articles. The journal also publishes thematic issues where collections of articles around a specific themes are gathered. Such themes are determined by the Editors upon request. Finally the journal wishes to promote knowledge and understanding of topics in Physical Geography, their origin, development and current standing through invited review articles.