Jatin Prakash, Shruti Singh, Ankur Miglani, P. Kankar
{"title":"基于压力信号的双向换向阀开关异常分析","authors":"Jatin Prakash, Shruti Singh, Ankur Miglani, P. Kankar","doi":"10.1115/1.4056474","DOIUrl":null,"url":null,"abstract":"\n Solenoid operated direction control valves, responsible for regulating the flow of fluid in hydraulic circuit highly relies on the control current for their actuation. The control currents supplied to the solenoid generate the electromagnetic force required for switching of valves by mechanical movement of spools inside. The deterioration in control current leads to the degradation in electromagnetic force and thus the spool takes longer to initiate as well as terminate the switching phenomenon. This delay or lag potentially causes the pressure, flow and power fluctuation, and unintended impacts on the system. This article presents a comparative analysis of detecting these anomalies by acquiring pressure signals across the valve using extreme gradient boosting (XGBoost) and one-dimensional convolution neural network (CNN). Four handcrafted statistical features and four fractal dimensions train XGBoost whereas 1D CNN with six hidden layers utilizes the raw signal of net pressure change across the valve. XGBoost predicts the switching behavior at an accuracy of 99.68%, and 1D CNN performs at its maximum possible accuracy (100%). The very narrow gap signifies the nearly equal significance of both of these different category classifiers. As XGBoost cannot handle the raw signals, the pre-processing increases the time consumption while 1D CNN does not require deep architecture and efficiently maps the complexity of the hydraulic system using pressure signals.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pressure Signal-Based Analysis of Anomalies in Switching Behavior of a Two-Way Directional Control Valve\",\"authors\":\"Jatin Prakash, Shruti Singh, Ankur Miglani, P. Kankar\",\"doi\":\"10.1115/1.4056474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Solenoid operated direction control valves, responsible for regulating the flow of fluid in hydraulic circuit highly relies on the control current for their actuation. The control currents supplied to the solenoid generate the electromagnetic force required for switching of valves by mechanical movement of spools inside. The deterioration in control current leads to the degradation in electromagnetic force and thus the spool takes longer to initiate as well as terminate the switching phenomenon. This delay or lag potentially causes the pressure, flow and power fluctuation, and unintended impacts on the system. This article presents a comparative analysis of detecting these anomalies by acquiring pressure signals across the valve using extreme gradient boosting (XGBoost) and one-dimensional convolution neural network (CNN). Four handcrafted statistical features and four fractal dimensions train XGBoost whereas 1D CNN with six hidden layers utilizes the raw signal of net pressure change across the valve. XGBoost predicts the switching behavior at an accuracy of 99.68%, and 1D CNN performs at its maximum possible accuracy (100%). The very narrow gap signifies the nearly equal significance of both of these different category classifiers. As XGBoost cannot handle the raw signals, the pre-processing increases the time consumption while 1D CNN does not require deep architecture and efficiently maps the complexity of the hydraulic system using pressure signals.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pressure Signal-Based Analysis of Anomalies in Switching Behavior of a Two-Way Directional Control Valve
Solenoid operated direction control valves, responsible for regulating the flow of fluid in hydraulic circuit highly relies on the control current for their actuation. The control currents supplied to the solenoid generate the electromagnetic force required for switching of valves by mechanical movement of spools inside. The deterioration in control current leads to the degradation in electromagnetic force and thus the spool takes longer to initiate as well as terminate the switching phenomenon. This delay or lag potentially causes the pressure, flow and power fluctuation, and unintended impacts on the system. This article presents a comparative analysis of detecting these anomalies by acquiring pressure signals across the valve using extreme gradient boosting (XGBoost) and one-dimensional convolution neural network (CNN). Four handcrafted statistical features and four fractal dimensions train XGBoost whereas 1D CNN with six hidden layers utilizes the raw signal of net pressure change across the valve. XGBoost predicts the switching behavior at an accuracy of 99.68%, and 1D CNN performs at its maximum possible accuracy (100%). The very narrow gap signifies the nearly equal significance of both of these different category classifiers. As XGBoost cannot handle the raw signals, the pre-processing increases the time consumption while 1D CNN does not require deep architecture and efficiently maps the complexity of the hydraulic system using pressure signals.