基于k-means聚类算法的2018年臭氧全球分布变化研究

Kaixuan Shao, Gang Mei, Yinghan Wu
{"title":"基于k-means聚类算法的2018年臭氧全球分布变化研究","authors":"Kaixuan Shao,&nbsp;Gang Mei,&nbsp;Yinghan Wu","doi":"10.1016/j.jcmds.2022.100028","DOIUrl":null,"url":null,"abstract":"<div><p>Ozone is an active gas in the atmosphere. Its content is quite low, but it plays an important role in protecting the health of human beings and other living things on earth. Ozone circulates in the atmosphere, and its total distribution and variation trend are related to geographical position. In this paper, we collected global Ozone tendency data and investigated the changes in global distribution of Ozone in 2018 using <span><math><mi>k</mi></math></span>-means clustering algorithm. We observed that (1) the global Ozone tendency can be broadly divided into four regions; (2) the data with a large variation range of total Ozone tendency is mainly concentrated near the sea–land boundary, and their distribution is similar to the coastline contour to some extent; (3) after clustering, the concentration area of the data with great changes in the total Ozone tendency is roughly x-shaped distribution, and the acute angle between the data and the latitude line is between <span><math><mrow><mn>25</mn><mo>°</mo></mrow></math></span> and <span><math><mrow><mn>45</mn><mo>°</mo></mrow></math></span>. Our findings can contribute to a clearer understanding and analysis of the tendency of global Ozone change and help mitigate the Ozone hole problem in different regions.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"3 ","pages":"Article 100028"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000049/pdfft?md5=78352574a10b9397c871aa984652f8a1&pid=1-s2.0-S2772415822000049-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Investigating changes in global distribution of Ozone in 2018 using k-means clustering algorithm\",\"authors\":\"Kaixuan Shao,&nbsp;Gang Mei,&nbsp;Yinghan Wu\",\"doi\":\"10.1016/j.jcmds.2022.100028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ozone is an active gas in the atmosphere. Its content is quite low, but it plays an important role in protecting the health of human beings and other living things on earth. Ozone circulates in the atmosphere, and its total distribution and variation trend are related to geographical position. In this paper, we collected global Ozone tendency data and investigated the changes in global distribution of Ozone in 2018 using <span><math><mi>k</mi></math></span>-means clustering algorithm. We observed that (1) the global Ozone tendency can be broadly divided into four regions; (2) the data with a large variation range of total Ozone tendency is mainly concentrated near the sea–land boundary, and their distribution is similar to the coastline contour to some extent; (3) after clustering, the concentration area of the data with great changes in the total Ozone tendency is roughly x-shaped distribution, and the acute angle between the data and the latitude line is between <span><math><mrow><mn>25</mn><mo>°</mo></mrow></math></span> and <span><math><mrow><mn>45</mn><mo>°</mo></mrow></math></span>. Our findings can contribute to a clearer understanding and analysis of the tendency of global Ozone change and help mitigate the Ozone hole problem in different regions.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"3 \",\"pages\":\"Article 100028\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000049/pdfft?md5=78352574a10b9397c871aa984652f8a1&pid=1-s2.0-S2772415822000049-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

臭氧是大气中的一种活性气体。它的含量很低,但它对保护人类和地球上其他生物的健康起着重要的作用。臭氧在大气中循环,其总分布和变化趋势与地理位置有关。本文收集了2018年全球臭氧趋势数据,利用k-means聚类算法研究了臭氧在全球的分布变化。结果表明:(1)全球臭氧趋势大致可分为四个区域;(2)总臭氧趋势变化幅度较大的资料主要集中在海陆边界附近,其分布与海岸线等值线有一定的相似性;(3)聚类后,臭氧总趋势变化较大的数据集中区大致呈x形分布,数据与纬度线的锐角在25°~ 45°之间。这些发现有助于更清晰地认识和分析全球臭氧变化的趋势,并有助于缓解不同区域的臭氧空洞问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating changes in global distribution of Ozone in 2018 using k-means clustering algorithm

Ozone is an active gas in the atmosphere. Its content is quite low, but it plays an important role in protecting the health of human beings and other living things on earth. Ozone circulates in the atmosphere, and its total distribution and variation trend are related to geographical position. In this paper, we collected global Ozone tendency data and investigated the changes in global distribution of Ozone in 2018 using k-means clustering algorithm. We observed that (1) the global Ozone tendency can be broadly divided into four regions; (2) the data with a large variation range of total Ozone tendency is mainly concentrated near the sea–land boundary, and their distribution is similar to the coastline contour to some extent; (3) after clustering, the concentration area of the data with great changes in the total Ozone tendency is roughly x-shaped distribution, and the acute angle between the data and the latitude line is between 25° and 45°. Our findings can contribute to a clearer understanding and analysis of the tendency of global Ozone change and help mitigate the Ozone hole problem in different regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1