研究木质素磺酸钠在塑料表面的吸附机理,作为塑料废物处理的潜在解决方案

Fateme Shariatikia, S. Ostad Movahed, Nadia Ostad Movahed
{"title":"研究木质素磺酸钠在塑料表面的吸附机理,作为塑料废物处理的潜在解决方案","authors":"Fateme Shariatikia, S. Ostad Movahed, Nadia Ostad Movahed","doi":"10.1177/09673911231189645","DOIUrl":null,"url":null,"abstract":"Separating different components of a plastic mixture is crucial in its recycling. Among the different separation techniques, flotation was selected as a cheap, non-toxic, and efficient process. Basis of the technique refers to the selective adsorption of a depressant on the plastics surface which cause the alteration in the surface energy of the plastic. Adsorption of the lignosulfonic acid sodium salt (SL) on the surface of the selected available plastics in the waste stream was studied. Plastics used in this study were Polyvinylchloride (PVC), acrylonitrile-butadiene-styrene polymer (ABS), polystyrene (PS), polypropylene (PP), polyoxymethylene (POM), and polycarbonate PC. It results showed that SL adsorbed on the surface of the selected plastics considerably. It was evidenced by the measured equilibrium adsorption capacities ( [Formula: see text] ) of the SL and also, the SEM and AFM images. SL adsorbed on the plastic surface in the sequence of [Formula: see text]. Also, the parameters of the Freundlich and Langmuir adsorption models were derived. Experimental data fit with the mentioned models appropriately. However, for the most studied plastics, the Freundlich model was more suitable. As important conclusion, PP separated from plastics mix using the flotation separation technique with the aid of SL as a depressant.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the adsorption mechanism of the sodium lignosulphonate on the surface of the selected plastics as a potential solution for plastics waste management\",\"authors\":\"Fateme Shariatikia, S. Ostad Movahed, Nadia Ostad Movahed\",\"doi\":\"10.1177/09673911231189645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separating different components of a plastic mixture is crucial in its recycling. Among the different separation techniques, flotation was selected as a cheap, non-toxic, and efficient process. Basis of the technique refers to the selective adsorption of a depressant on the plastics surface which cause the alteration in the surface energy of the plastic. Adsorption of the lignosulfonic acid sodium salt (SL) on the surface of the selected available plastics in the waste stream was studied. Plastics used in this study were Polyvinylchloride (PVC), acrylonitrile-butadiene-styrene polymer (ABS), polystyrene (PS), polypropylene (PP), polyoxymethylene (POM), and polycarbonate PC. It results showed that SL adsorbed on the surface of the selected plastics considerably. It was evidenced by the measured equilibrium adsorption capacities ( [Formula: see text] ) of the SL and also, the SEM and AFM images. SL adsorbed on the plastic surface in the sequence of [Formula: see text]. Also, the parameters of the Freundlich and Langmuir adsorption models were derived. Experimental data fit with the mentioned models appropriately. However, for the most studied plastics, the Freundlich model was more suitable. As important conclusion, PP separated from plastics mix using the flotation separation technique with the aid of SL as a depressant.\",\"PeriodicalId\":20417,\"journal\":{\"name\":\"Polymers and Polymer Composites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers and Polymer Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09673911231189645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231189645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分离塑料混合物的不同成分对回收利用至关重要。在各种分离技术中,浮选是一种廉价、无毒、高效的方法。该技术的基础是指一种抑制剂在塑料表面的选择性吸附,导致塑料表面能的改变。研究了木质素磺酸钠盐(SL)在废液中有效塑料表面的吸附。本研究使用的塑料有聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯聚合物(ABS)、聚苯乙烯(PS)、聚丙烯(PP)、聚甲醛(POM)和聚碳酸酯PC。结果表明,SL在所选塑料表面有较好的吸附作用。这可以通过测量的SL的平衡吸附容量(公式:见文)以及SEM和AFM图像来证明。SL吸附在塑料表面的顺序为[公式:见文]。并推导了Freundlich和Langmuir吸附模型的参数。实验数据与上述模型拟合较好。然而,对于研究最多的塑料,Freundlich模型更合适。作为一个重要的结论,使用SL作为抑制剂的浮选分离技术从塑料混合物中分离出PP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the adsorption mechanism of the sodium lignosulphonate on the surface of the selected plastics as a potential solution for plastics waste management
Separating different components of a plastic mixture is crucial in its recycling. Among the different separation techniques, flotation was selected as a cheap, non-toxic, and efficient process. Basis of the technique refers to the selective adsorption of a depressant on the plastics surface which cause the alteration in the surface energy of the plastic. Adsorption of the lignosulfonic acid sodium salt (SL) on the surface of the selected available plastics in the waste stream was studied. Plastics used in this study were Polyvinylchloride (PVC), acrylonitrile-butadiene-styrene polymer (ABS), polystyrene (PS), polypropylene (PP), polyoxymethylene (POM), and polycarbonate PC. It results showed that SL adsorbed on the surface of the selected plastics considerably. It was evidenced by the measured equilibrium adsorption capacities ( [Formula: see text] ) of the SL and also, the SEM and AFM images. SL adsorbed on the plastic surface in the sequence of [Formula: see text]. Also, the parameters of the Freundlich and Langmuir adsorption models were derived. Experimental data fit with the mentioned models appropriately. However, for the most studied plastics, the Freundlich model was more suitable. As important conclusion, PP separated from plastics mix using the flotation separation technique with the aid of SL as a depressant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and characterising FFF process of semi-crystalline polymers: Warpage formation and mechanism analysis Machine learning non-isothermal study of the blade coating process (NIS-BCP) using non-Newtonian nanofluid with magnetohydrodynamic (MHD) and slip effects Performance of polyurethane and polyurethane nanocomposites modified by graphene, carbon nanotubes, and fumed silica in dry and wet environments Effect of hybrid weaving patterns on mechanical performance of 3D woven structures Investigation of effects of bis(2-hydroxyethyl) terephthalate derived from glycolysis of polyethylene terephthalate on the properties of flexible polyurethane foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1