P13K/AKT通路新抑制剂的鉴定:开发卵巢癌新治疗剂的集成硅研究

Q2 Physics and Astronomy Physical Sciences Reviews Pub Date : 2023-05-25 DOI:10.1515/psr-2022-0341
I. O. Adedotun, M. Abdul-Hammed, Basirat Temidayo Egunjobi, Ubeydat Temitope Ismail, Jemilat Yetunde Yusuf, Tolulope Irapada Afolabi, Ibrahim Olajide Gbadebo
{"title":"P13K/AKT通路新抑制剂的鉴定:开发卵巢癌新治疗剂的集成硅研究","authors":"I. O. Adedotun, M. Abdul-Hammed, Basirat Temidayo Egunjobi, Ubeydat Temitope Ismail, Jemilat Yetunde Yusuf, Tolulope Irapada Afolabi, Ibrahim Olajide Gbadebo","doi":"10.1515/psr-2022-0341","DOIUrl":null,"url":null,"abstract":"Abstract Ovarian cancer is a crucial gynaecological unmet medical disease with a high mortality rate. According to recent research, the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways are hyper-activated in the majority of ovarian cancer patients, necessitating the use of inhibitors. Over the years, phytochemicals have been used as alternative sources of therapeutic agents due to their reported biological activities and limited side effects. Curcuma longa (Tumeric), a reported ayurvedic medicine has also been noted for its anti-cancer properties. Thus, 155 phytochemicals from this plant and 2 reference drugs were evaluated for their inhibitory prowess against P13K/AKT receptor using a computer-aided drug design approach. The binding scores and inhibiting efficiencies were obtained via virtual screening. Molinspiration Chemoinformatics and SwissADME tools were used to investigate the drug-likeness properties and oral bioavailability of the compounds selected, while the ADMET SAR-2 website was used to conduct the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis. Other analyses performed on the selected compounds include bioactivity, activity spectra for substances (PASS) prediction, binding mode, and molecular interaction. The results revealed that Hopenone 1 (−8.8 kcal mol−1) and Epriprocurcumenol (−7.8 kcal mol−1) are potent inhibitors of the P13K receptor, while Epiprocurcumenol (−9.0 kcal mol−1), Procurcuminol (−8.6 kcal mol−1) and Curlone (−8.3 kcal mol−1) are potential inhibitors of AKT receptor. In comparison to Topotecan and Melphalan, they have better binding affinities, oral bioavailability, drug-likeness characteristics, ADMET properties, bioactivities, PASS properties, binding mechanism, and also interact well with the active site of the target receptor. As a result, this preliminary investigation suggests that these chemicals should be studied further for the design of novel ovarian cancer therapeutics.","PeriodicalId":20156,"journal":{"name":"Physical Sciences Reviews","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of novel inhibitors of P13K/AKT pathways: an integrated in-silico study towards the development of a new therapeutic agent against ovarian cancer\",\"authors\":\"I. O. Adedotun, M. Abdul-Hammed, Basirat Temidayo Egunjobi, Ubeydat Temitope Ismail, Jemilat Yetunde Yusuf, Tolulope Irapada Afolabi, Ibrahim Olajide Gbadebo\",\"doi\":\"10.1515/psr-2022-0341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ovarian cancer is a crucial gynaecological unmet medical disease with a high mortality rate. According to recent research, the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways are hyper-activated in the majority of ovarian cancer patients, necessitating the use of inhibitors. Over the years, phytochemicals have been used as alternative sources of therapeutic agents due to their reported biological activities and limited side effects. Curcuma longa (Tumeric), a reported ayurvedic medicine has also been noted for its anti-cancer properties. Thus, 155 phytochemicals from this plant and 2 reference drugs were evaluated for their inhibitory prowess against P13K/AKT receptor using a computer-aided drug design approach. The binding scores and inhibiting efficiencies were obtained via virtual screening. Molinspiration Chemoinformatics and SwissADME tools were used to investigate the drug-likeness properties and oral bioavailability of the compounds selected, while the ADMET SAR-2 website was used to conduct the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis. Other analyses performed on the selected compounds include bioactivity, activity spectra for substances (PASS) prediction, binding mode, and molecular interaction. The results revealed that Hopenone 1 (−8.8 kcal mol−1) and Epriprocurcumenol (−7.8 kcal mol−1) are potent inhibitors of the P13K receptor, while Epiprocurcumenol (−9.0 kcal mol−1), Procurcuminol (−8.6 kcal mol−1) and Curlone (−8.3 kcal mol−1) are potential inhibitors of AKT receptor. In comparison to Topotecan and Melphalan, they have better binding affinities, oral bioavailability, drug-likeness characteristics, ADMET properties, bioactivities, PASS properties, binding mechanism, and also interact well with the active site of the target receptor. As a result, this preliminary investigation suggests that these chemicals should be studied further for the design of novel ovarian cancer therapeutics.\",\"PeriodicalId\":20156,\"journal\":{\"name\":\"Physical Sciences Reviews\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Sciences Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/psr-2022-0341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/psr-2022-0341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

卵巢癌是一种重要的妇科未满足医学疾病,死亡率高。根据最近的研究,磷酸肌醇3激酶(PI3K)/蛋白激酶B (AKT)/哺乳动物雷帕霉素靶蛋白(mTOR)通路在大多数卵巢癌患者中过度激活,需要使用抑制剂。多年来,植物化学物质由于其生物活性和有限的副作用而被用作治疗药物的替代来源。姜黄(莪术),据报道,一种阿育吠陀药物也因其抗癌特性而闻名。因此,利用计算机辅助药物设计方法评估了该植物中155种植物化学物质和2种参比药物对P13K/AKT受体的抑制能力。通过虚拟筛选获得结合分数和抑制效率。使用Molinspiration化学信息学和SwissADME工具研究所选化合物的药物相似性和口服生物利用度,使用ADMET SAR-2网站进行吸收、分布、代谢、排泄和毒性(ADMET)分析。对所选化合物进行的其他分析包括生物活性、物质活性谱(PASS)预测、结合模式和分子相互作用。结果显示,Hopenone 1(−8.8 千卡 摩尔−1)和Epriprocurcumenol(−7.8 千卡 摩尔−1)强有力的抑制剂P13K受体,而Epiprocurcumenol(−9.0 千卡 摩尔−1),Procurcuminol(−8.6 千卡 摩尔−1)和Curlone(−8.3 千卡 摩尔−1)是潜在的一种蛋白激酶受体抑制剂。与Topotecan和Melphalan相比,它们具有更好的结合亲和力、口服生物利用度、药物相似特性、ADMET特性、生物活性、PASS特性、结合机制,并且与靶受体活性位点相互作用良好。因此,这项初步研究表明,这些化学物质应该进一步研究,以设计新的卵巢癌治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of novel inhibitors of P13K/AKT pathways: an integrated in-silico study towards the development of a new therapeutic agent against ovarian cancer
Abstract Ovarian cancer is a crucial gynaecological unmet medical disease with a high mortality rate. According to recent research, the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways are hyper-activated in the majority of ovarian cancer patients, necessitating the use of inhibitors. Over the years, phytochemicals have been used as alternative sources of therapeutic agents due to their reported biological activities and limited side effects. Curcuma longa (Tumeric), a reported ayurvedic medicine has also been noted for its anti-cancer properties. Thus, 155 phytochemicals from this plant and 2 reference drugs were evaluated for their inhibitory prowess against P13K/AKT receptor using a computer-aided drug design approach. The binding scores and inhibiting efficiencies were obtained via virtual screening. Molinspiration Chemoinformatics and SwissADME tools were used to investigate the drug-likeness properties and oral bioavailability of the compounds selected, while the ADMET SAR-2 website was used to conduct the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis. Other analyses performed on the selected compounds include bioactivity, activity spectra for substances (PASS) prediction, binding mode, and molecular interaction. The results revealed that Hopenone 1 (−8.8 kcal mol−1) and Epriprocurcumenol (−7.8 kcal mol−1) are potent inhibitors of the P13K receptor, while Epiprocurcumenol (−9.0 kcal mol−1), Procurcuminol (−8.6 kcal mol−1) and Curlone (−8.3 kcal mol−1) are potential inhibitors of AKT receptor. In comparison to Topotecan and Melphalan, they have better binding affinities, oral bioavailability, drug-likeness characteristics, ADMET properties, bioactivities, PASS properties, binding mechanism, and also interact well with the active site of the target receptor. As a result, this preliminary investigation suggests that these chemicals should be studied further for the design of novel ovarian cancer therapeutics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Sciences Reviews
Physical Sciences Reviews MULTIDISCIPLINARY SCIENCES-
CiteScore
2.40
自引率
0.00%
发文量
173
期刊最新文献
Preparing new secondary science teachers in the context of sustainable development goals: green and sustainable chemistry A facile and efficient one-pot 3-component reaction (3-CR) method for the synthesis of thiazine-based heterocyclic compounds using zwitterion adduct intermediates The workshops on computational applications in secondary metabolite discovery (CAiSMD) Activated carbon-mediated adsorption of emerging contaminants Carbon metal nanoparticle composites for the removal of pollutants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1