{"title":"油浸螺杆式含酸气体压缩机常见故障模式","authors":"D. Pallister, P. Ong","doi":"10.2118/197591-ms","DOIUrl":null,"url":null,"abstract":"\n There are many types of equipment failures encountered during the operation of oil-flooded twin screw natural gas compressors. Defining the failure modes of gas compressors mining sour gas is of primary importance for improving reliability. The failure modes for compressors operating with hydrodymanic journal bearings are different from compressors operating with rolling element bearings. Gas compressors operating in corrosive environments easily succumb to failures such as corrosion-pitting, hydrogen-assisted fatigue and chemical attack. Some common failure modes will be defined for each type of bearings used in rotary screw compressors. Identifying these failure modes assists in defining the problem so that new lubricants can be designed to extend the working life of the compressor.\n The failure modes of roller bearing equipped compressors operating in sour and acid gases are primarily due to premature spall formation from hydrogen-assisted fatigue (i.e. hydrogen embrittlement) and sulfide stress corrosion. We have found that hydrodynamic journal bearings equipped compressors operating in sour gases will fail due to sulfide corrosion attack of the hydrodynamic bearings. A new additive system was developed to inhibit both types of failure modes. Laboratory corrosion tests were used to compare corrosion inhibition of new additive system to well-established compressor lubricants. When levels of corrosion inhibition were established, the experimental lubricants were field tested. Field tests of this experimental lubricant were carried out in compressors operating with both hydrodynamic bearings and rolling element bearings. The testing in this difficult natural gas field, demonstrated that CPI’s new experimental fluids have extended the operating time to failure, for compressors operating with both type of bearing systems, from about 2,000 hours to well over 10,000 hours. CPI has developed lubricant solutions that improve the reliability by extending the time to failure for oil-flooded twin screw compressors mining water-saturated natural gas streams with both acid gas and sour gas elements.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common Failure Modes in Oil Flooded Rotary Screw Sour Gas Compressors\",\"authors\":\"D. Pallister, P. Ong\",\"doi\":\"10.2118/197591-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are many types of equipment failures encountered during the operation of oil-flooded twin screw natural gas compressors. Defining the failure modes of gas compressors mining sour gas is of primary importance for improving reliability. The failure modes for compressors operating with hydrodymanic journal bearings are different from compressors operating with rolling element bearings. Gas compressors operating in corrosive environments easily succumb to failures such as corrosion-pitting, hydrogen-assisted fatigue and chemical attack. Some common failure modes will be defined for each type of bearings used in rotary screw compressors. Identifying these failure modes assists in defining the problem so that new lubricants can be designed to extend the working life of the compressor.\\n The failure modes of roller bearing equipped compressors operating in sour and acid gases are primarily due to premature spall formation from hydrogen-assisted fatigue (i.e. hydrogen embrittlement) and sulfide stress corrosion. We have found that hydrodynamic journal bearings equipped compressors operating in sour gases will fail due to sulfide corrosion attack of the hydrodynamic bearings. A new additive system was developed to inhibit both types of failure modes. Laboratory corrosion tests were used to compare corrosion inhibition of new additive system to well-established compressor lubricants. When levels of corrosion inhibition were established, the experimental lubricants were field tested. Field tests of this experimental lubricant were carried out in compressors operating with both hydrodynamic bearings and rolling element bearings. The testing in this difficult natural gas field, demonstrated that CPI’s new experimental fluids have extended the operating time to failure, for compressors operating with both type of bearing systems, from about 2,000 hours to well over 10,000 hours. CPI has developed lubricant solutions that improve the reliability by extending the time to failure for oil-flooded twin screw compressors mining water-saturated natural gas streams with both acid gas and sour gas elements.\",\"PeriodicalId\":11328,\"journal\":{\"name\":\"Day 4 Thu, November 14, 2019\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197591-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197591-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Common Failure Modes in Oil Flooded Rotary Screw Sour Gas Compressors
There are many types of equipment failures encountered during the operation of oil-flooded twin screw natural gas compressors. Defining the failure modes of gas compressors mining sour gas is of primary importance for improving reliability. The failure modes for compressors operating with hydrodymanic journal bearings are different from compressors operating with rolling element bearings. Gas compressors operating in corrosive environments easily succumb to failures such as corrosion-pitting, hydrogen-assisted fatigue and chemical attack. Some common failure modes will be defined for each type of bearings used in rotary screw compressors. Identifying these failure modes assists in defining the problem so that new lubricants can be designed to extend the working life of the compressor.
The failure modes of roller bearing equipped compressors operating in sour and acid gases are primarily due to premature spall formation from hydrogen-assisted fatigue (i.e. hydrogen embrittlement) and sulfide stress corrosion. We have found that hydrodynamic journal bearings equipped compressors operating in sour gases will fail due to sulfide corrosion attack of the hydrodynamic bearings. A new additive system was developed to inhibit both types of failure modes. Laboratory corrosion tests were used to compare corrosion inhibition of new additive system to well-established compressor lubricants. When levels of corrosion inhibition were established, the experimental lubricants were field tested. Field tests of this experimental lubricant were carried out in compressors operating with both hydrodynamic bearings and rolling element bearings. The testing in this difficult natural gas field, demonstrated that CPI’s new experimental fluids have extended the operating time to failure, for compressors operating with both type of bearing systems, from about 2,000 hours to well over 10,000 hours. CPI has developed lubricant solutions that improve the reliability by extending the time to failure for oil-flooded twin screw compressors mining water-saturated natural gas streams with both acid gas and sour gas elements.