配水系统的空间图卷积神经网络

Inaam Ashraf, L. Hermes, André Artelt, Barbara Hammer
{"title":"配水系统的空间图卷积神经网络","authors":"Inaam Ashraf, L. Hermes, André Artelt, Barbara Hammer","doi":"10.48550/arXiv.2211.09587","DOIUrl":null,"url":null,"abstract":"We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"12 1","pages":"29-41"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatial Graph Convolution Neural Networks for Water Distribution Systems\",\"authors\":\"Inaam Ashraf, L. Hermes, André Artelt, Barbara Hammer\",\"doi\":\"10.48550/arXiv.2211.09587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.\",\"PeriodicalId\":91439,\"journal\":{\"name\":\"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis\",\"volume\":\"12 1\",\"pages\":\"29-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.09587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.09587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了基于稀疏信号的配水系统(WDS)给出的图中缺失值估计任务,作为关键基础设施领域的代表性机器学习挑战。底层图具有相对较低的节点度和较高的直径,而图中的信息是全局相关的,因此图神经网络面临着长期依赖的挑战。我们提出了一种基于消息传递的特定体系结构,该体系结构在WDS域中的许多基准测试任务中显示出出色的结果。此外,我们还研究了一种多跳变量,它需要的资源少得多,并为构建大型WDS图开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Graph Convolution Neural Networks for Water Distribution Systems
We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Permutation-Invariant Embeddings for Description Logic Concepts Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings Transferable Deep Metric Learning for Clustering Revised Conditional t-SNE: Looking Beyond the Nearest Neighbors Shapley Values with Uncertain Value Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1