首页 > 最新文献

Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis最新文献

英文 中文
Learning Permutation-Invariant Embeddings for Description Logic Concepts 描述逻辑概念的置换不变嵌入学习
Caglar Demir, A. N. Ngomo
Concept learning deals with learning description logic concepts from a background knowledge and input examples. The goal is to learn a concept that covers all positive examples, while not covering any negative examples. This non-trivial task is often formulated as a search problem within an infinite quasi-ordered concept space. Although state-of-the-art models have been successfully applied to tackle this problem, their large-scale applications have been severely hindered due to their excessive exploration incurring impractical runtimes. Here, we propose a remedy for this limitation. We reformulate the learning problem as a multi-label classification problem and propose a neural embedding model (NERO) that learns permutation-invariant embeddings for sets of examples tailored towards predicting $F_1$ scores of pre-selected description logic concepts. By ranking such concepts in descending order of predicted scores, a possible goal concept can be detected within few retrieval operations, i.e., no excessive exploration. Importantly, top-ranked concepts can be used to start the search procedure of state-of-the-art symbolic models in multiple advantageous regions of a concept space, rather than starting it in the most general concept $top$. Our experiments on 5 benchmark datasets with 770 learning problems firmly suggest that NERO significantly (p-value<1%) outperforms the state-of-the-art models in terms of $F_1$ score, the number of explored concepts, and the total runtime. We provide an open-source implementation of our approach.
概念学习涉及从背景知识和输入示例中学习描述逻辑概念。目标是学习一个概念,涵盖所有积极的例子,而不包括任何消极的例子。这个非平凡的任务通常被表述为一个无限准有序概念空间中的搜索问题。尽管最先进的模型已经成功地应用于解决这个问题,但由于过度的探索导致不切实际的运行时间,它们的大规模应用受到了严重阻碍。在这里,我们提出了一种补救方法。我们将学习问题重新表述为一个多标签分类问题,并提出了一个神经嵌入模型(NERO),该模型可以学习用于预测预选描述逻辑概念的$F_1$分数的示例集的排列不变嵌入。通过将这些概念按照预测分数的降序排列,可以在很少的检索操作中检测到可能的目标概念,即不需要过多的探索。重要的是,排名靠前的概念可以用来在概念空间的多个有利区域启动最先进的符号模型的搜索过程,而不是从最一般的概念$top$开始。我们在5个具有770个学习问题的基准数据集上进行的实验表明,NERO在$F_1$分数、探索的概念数量和总运行时间方面明显优于最先进的模型(p值<1%)。我们提供了我们方法的开源实现。
{"title":"Learning Permutation-Invariant Embeddings for Description Logic Concepts","authors":"Caglar Demir, A. N. Ngomo","doi":"10.48550/arXiv.2303.01844","DOIUrl":"https://doi.org/10.48550/arXiv.2303.01844","url":null,"abstract":"Concept learning deals with learning description logic concepts from a background knowledge and input examples. The goal is to learn a concept that covers all positive examples, while not covering any negative examples. This non-trivial task is often formulated as a search problem within an infinite quasi-ordered concept space. Although state-of-the-art models have been successfully applied to tackle this problem, their large-scale applications have been severely hindered due to their excessive exploration incurring impractical runtimes. Here, we propose a remedy for this limitation. We reformulate the learning problem as a multi-label classification problem and propose a neural embedding model (NERO) that learns permutation-invariant embeddings for sets of examples tailored towards predicting $F_1$ scores of pre-selected description logic concepts. By ranking such concepts in descending order of predicted scores, a possible goal concept can be detected within few retrieval operations, i.e., no excessive exploration. Importantly, top-ranked concepts can be used to start the search procedure of state-of-the-art symbolic models in multiple advantageous regions of a concept space, rather than starting it in the most general concept $top$. Our experiments on 5 benchmark datasets with 770 learning problems firmly suggest that NERO significantly (p-value<1%) outperforms the state-of-the-art models in terms of $F_1$ score, the number of explored concepts, and the total runtime. We provide an open-source implementation of our approach.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"9 1","pages":"103-115"},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84515096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings 局部性和规则语言对知识图嵌入解释的影响
Luis Galárraga
Knowledge graphs (KGs) are key tools in many AI-related tasks such as reasoning or question answering. This has, in turn, propelled research in link prediction in KGs, the task of predicting missing relationships from the available knowledge. Solutions based on KG embeddings have shown promising results in this matter. On the downside, these approaches are usually unable to explain their predictions. While some works have proposed to compute post-hoc rule explanations for embedding-based link predictors, these efforts have mostly resorted to rules with unbounded atoms, e.g., bornIn(x,y) =>residence(x,y), learned on a global scope, i.e., the entire KG. None of these works has considered the impact of rules with bounded atoms such as nationality(x,England) =>speaks(x, English), or the impact of learning from regions of the KG, i.e., local scopes. We therefore study the effects of these factors on the quality of rule-based explanations for embedding-based link predictors. Our results suggest that more specific rules and local scopes can improve the accuracy of the explanations. Moreover, these rules can provide further insights about the inner-workings of KG embeddings for link prediction.
知识图(KGs)是许多人工智能相关任务(如推理或问题回答)的关键工具。这反过来又推动了KGs中链接预测的研究,即从现有知识中预测缺失关系的任务。基于KG嵌入的解决方案在这个问题上显示了令人鼓舞的结果。不利的一面是,这些方法通常无法解释它们的预测。虽然一些工作已经提出计算基于嵌入的链接预测器的事后规则解释,但这些努力大多采用无界原子的规则,例如,bornIn(x,y) =>residence(x,y),在全局范围内学习,即整个KG。这些作品都没有考虑到有界原子规则的影响,比如国籍(x,England) =>说话(x, English),或者从KG的区域(即本地范围)学习的影响。因此,我们研究了这些因素对基于嵌入的链接预测器的基于规则的解释质量的影响。我们的研究结果表明,更具体的规则和局部范围可以提高解释的准确性。此外,这些规则可以进一步了解链接预测中KG嵌入的内部工作原理。
{"title":"Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings","authors":"Luis Galárraga","doi":"10.48550/arXiv.2302.06967","DOIUrl":"https://doi.org/10.48550/arXiv.2302.06967","url":null,"abstract":"Knowledge graphs (KGs) are key tools in many AI-related tasks such as reasoning or question answering. This has, in turn, propelled research in link prediction in KGs, the task of predicting missing relationships from the available knowledge. Solutions based on KG embeddings have shown promising results in this matter. On the downside, these approaches are usually unable to explain their predictions. While some works have proposed to compute post-hoc rule explanations for embedding-based link predictors, these efforts have mostly resorted to rules with unbounded atoms, e.g., bornIn(x,y) =>residence(x,y), learned on a global scope, i.e., the entire KG. None of these works has considered the impact of rules with bounded atoms such as nationality(x,England) =>speaks(x, English), or the impact of learning from regions of the KG, i.e., local scopes. We therefore study the effects of these factors on the quality of rule-based explanations for embedding-based link predictors. Our results suggest that more specific rules and local scopes can improve the accuracy of the explanations. Moreover, these rules can provide further insights about the inner-workings of KG embeddings for link prediction.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"415 1","pages":"143-155"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79429056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transferable Deep Metric Learning for Clustering 用于聚类的可转移深度度量学习
C. SimoAlami, Rim Kaddah, J. Read
Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.
在高维空间中聚类是一项困难的任务;在维度的诅咒下,通常的距离度量可能不再适用。事实上,度量的选择是至关重要的,它高度依赖于数据集的特征。然而,一个单一的度量可以用来正确地对不同领域的多个数据集进行聚类。我们建议这样做,为学习可转移度量提供一个框架。我们表明,我们可以在标记数据集上学习度量,然后将其应用于聚类不同的数据集,使用在一般意义上表征所需聚类的嵌入空间。我们在几个不同复杂性的数据集(synthetic, MNIST, SVHN, omniglot)上学习和测试这些指标,并在仅使用少量标记训练数据集和浅层网络的情况下获得与最先进技术相竞争的结果。
{"title":"Transferable Deep Metric Learning for Clustering","authors":"C. SimoAlami, Rim Kaddah, J. Read","doi":"10.48550/arXiv.2302.06523","DOIUrl":"https://doi.org/10.48550/arXiv.2302.06523","url":null,"abstract":"Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"2 1","pages":"15-28"},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82341871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revised Conditional t-SNE: Looking Beyond the Nearest Neighbors 修订条件t-SNE:超越近邻
Edith Heiter, Bo Kang, R. Seurinck, Jefrey Lijffijt
{"title":"Revised Conditional t-SNE: Looking Beyond the Nearest Neighbors","authors":"Edith Heiter, Bo Kang, R. Seurinck, Jefrey Lijffijt","doi":"10.1007/978-3-031-30047-9_14","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_14","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"34 1","pages":"169-181"},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88503901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Shapley Values with Uncertain Value Functions 具有不确定值函数的Shapley值
R. Heese, Sascha Mücke, Matthias Jakobs, Thore Gerlach, N. Piatkowski
{"title":"Shapley Values with Uncertain Value Functions","authors":"R. Heese, Sascha Mücke, Matthias Jakobs, Thore Gerlach, N. Piatkowski","doi":"10.1007/978-3-031-30047-9_13","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_13","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"176 1","pages":"156-168"},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74708045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
APs: A Proxemic Framework for Social Media Interactions Modeling and Analysis ap:社交媒体互动建模与分析的本体框架
Maxime Masson, P. Roose, C. Sallaberry, R. Agerri, M. Bessagnet, A. L. Parc-Lacayrelle
{"title":"APs: A Proxemic Framework for Social Media Interactions Modeling and Analysis","authors":"Maxime Masson, P. Roose, C. Sallaberry, R. Agerri, M. Bessagnet, A. L. Parc-Lacayrelle","doi":"10.1007/978-3-031-30047-9_23","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_23","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"29 1","pages":"287-299"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74052834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering Diverse Top-K Characteristic Lists 发现不同的Top-K特征列表
Antonio Lopez-Martinez-Carrasco, Hugo Manuel Proença, J. Juarez, M. Leeuwen, M. Campos
{"title":"Discovering Diverse Top-K Characteristic Lists","authors":"Antonio Lopez-Martinez-Carrasco, Hugo Manuel Proença, J. Juarez, M. Leeuwen, M. Campos","doi":"10.1007/978-3-031-30047-9_21","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_21","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"95 1","pages":"262-273"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80878482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROCKAD: Transferring ROCKET to Whole Time Series Anomaly Detection 将火箭转移到全时间序列异常检测
Andreas Theissler, Manuel Wengert, Felix Gerschner
{"title":"ROCKAD: Transferring ROCKET to Whole Time Series Anomaly Detection","authors":"Andreas Theissler, Manuel Wengert, Felix Gerschner","doi":"10.1007/978-3-031-30047-9_33","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_33","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"31 1","pages":"419-432"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81223273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Compositionality in Data Embedding 关于数据嵌入中的组合性
Zhaozhen Xu, Zhijin Guo, N. Cristianini
{"title":"On Compositionality in Data Embedding","authors":"Zhaozhen Xu, Zhijin Guo, N. Cristianini","doi":"10.1007/978-3-031-30047-9_38","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_38","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"108 1","pages":"484-496"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84017422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
User Authentication via Multifaceted Mouse Movements and Outlier Exposure 用户身份验证通过多方面的鼠标移动和异常暴露
J. Matthiesen, Hanne Hastedt, Ulf Brefeld
{"title":"User Authentication via Multifaceted Mouse Movements and Outlier Exposure","authors":"J. Matthiesen, Hanne Hastedt, Ulf Brefeld","doi":"10.1007/978-3-031-30047-9_24","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_24","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"34 1","pages":"300-313"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78328974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1