线性游标驱动器与两个移动

A. Heya, K. Hirata, N. Niguchi
{"title":"线性游标驱动器与两个移动","authors":"A. Heya, K. Hirata, N. Niguchi","doi":"10.17816/TRANSSYST20206163-79","DOIUrl":null,"url":null,"abstract":"Background: Linear motion devices for industrial machines and robots are expected to realize their high efficiency drive and simple structure. Usually, a feed screw mechanism composed of a rotary motor and a ball-screw or slide-screw is employed. However, it has some problems such as the decrease of the drive efficiency, flexibility against external forces, noise, etc. Various linear actuators and motors have been developed utilizing the feature of a direct drive. \nAim: In this paper, we propose a novel linear actuator which 2 movers can be independently controlled using 3-phase and 6-phase superimposed currents for decreasing the size and weight of the system. The proposed linear actuator is driven by the operating principle of a vernier motor which is expected to achieve a high thrust force density per permanent magnet volume. \nMethods: The operating principle and the static thrust force characteristics of the proposed linear actuator are verified by an electromagnetic field analysis using 3-D finite element method, and the back electromotive force characteristics are also analyzed. In addition, the dynamic characteristics under position feedback control are analyzed. The control system uses a vector control using PID controller, and the control input is given by the 3-phase and 6-phase superimposed currents. \nResults: The static force characteristics were investigated. From the analyzed results, the force interference between the two movers was small. Moreover, the interference of the back electromotive force of the 3-phase and 6-phase movers were not observed. The movers could be independently driven under position feedback control using 3-phase and 6-phase superimposed currents. The dynamic characteristics analyses showed that the mover well followed a target position. From a step response, the time constant and the response of the position feedback system were investigated. \nConclusion: This paper presents a linear vernier actuator with two movers. The basic structure and operating principle of the actuator were described. Moreover, the static characteristics and the dynamic characteristics under position feedback control were analyzed. It was found that the movers can be independently driven.","PeriodicalId":100849,"journal":{"name":"Journal of Transportation Systems Engineering and Information Technology","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Vernier actuator with two movers\",\"authors\":\"A. Heya, K. Hirata, N. Niguchi\",\"doi\":\"10.17816/TRANSSYST20206163-79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Linear motion devices for industrial machines and robots are expected to realize their high efficiency drive and simple structure. Usually, a feed screw mechanism composed of a rotary motor and a ball-screw or slide-screw is employed. However, it has some problems such as the decrease of the drive efficiency, flexibility against external forces, noise, etc. Various linear actuators and motors have been developed utilizing the feature of a direct drive. \\nAim: In this paper, we propose a novel linear actuator which 2 movers can be independently controlled using 3-phase and 6-phase superimposed currents for decreasing the size and weight of the system. The proposed linear actuator is driven by the operating principle of a vernier motor which is expected to achieve a high thrust force density per permanent magnet volume. \\nMethods: The operating principle and the static thrust force characteristics of the proposed linear actuator are verified by an electromagnetic field analysis using 3-D finite element method, and the back electromotive force characteristics are also analyzed. In addition, the dynamic characteristics under position feedback control are analyzed. The control system uses a vector control using PID controller, and the control input is given by the 3-phase and 6-phase superimposed currents. \\nResults: The static force characteristics were investigated. From the analyzed results, the force interference between the two movers was small. Moreover, the interference of the back electromotive force of the 3-phase and 6-phase movers were not observed. The movers could be independently driven under position feedback control using 3-phase and 6-phase superimposed currents. The dynamic characteristics analyses showed that the mover well followed a target position. From a step response, the time constant and the response of the position feedback system were investigated. \\nConclusion: This paper presents a linear vernier actuator with two movers. The basic structure and operating principle of the actuator were described. Moreover, the static characteristics and the dynamic characteristics under position feedback control were analyzed. It was found that the movers can be independently driven.\",\"PeriodicalId\":100849,\"journal\":{\"name\":\"Journal of Transportation Systems Engineering and Information Technology\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transportation Systems Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/TRANSSYST20206163-79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Systems Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/TRANSSYST20206163-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:用于工业机械和机器人的直线运动装置有望实现其高效驱动和简单结构。通常,采用由旋转马达和滚珠丝杠或滑动丝杠组成的进给丝杠机构。但它存在着驱动效率下降、抗外力灵活性差、噪声大等问题。利用直接驱动的特性,已经开发了各种线性执行器和电机。目的:为了减小系统的体积和重量,本文提出了一种新型的线性驱动器,该驱动器采用3相和6相叠加电流,可以独立控制2个电机。所提出的直线驱动器由游标电机的工作原理驱动,有望实现每永磁体体积的高推力密度。方法:采用三维有限元法对所提出的直线执行器进行电磁场分析,验证其工作原理和静态推力特性,并对其反电动势特性进行分析。此外,还分析了位置反馈控制下的动态特性。控制系统采用采用PID控制器的矢量控制,控制输入由三相和六相叠加电流给出。结果:研究了静力特性。从分析结果来看,两个电机之间的力干扰较小。此外,没有观察到三相和六相电机的反电动势干扰。采用3相和6相叠加电流的位置反馈控制,实现了电机的独立驱动。动态特性分析表明,该动力系统能够很好地跟踪目标位置。从阶跃响应出发,研究了位置反馈系统的时间常数和响应。结论:本文提出了一种双动线性游标作动器。介绍了该驱动器的基本结构和工作原理。分析了位置反馈控制下的静态特性和动态特性。结果表明,该电机可以独立驱动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear Vernier actuator with two movers
Background: Linear motion devices for industrial machines and robots are expected to realize their high efficiency drive and simple structure. Usually, a feed screw mechanism composed of a rotary motor and a ball-screw or slide-screw is employed. However, it has some problems such as the decrease of the drive efficiency, flexibility against external forces, noise, etc. Various linear actuators and motors have been developed utilizing the feature of a direct drive. Aim: In this paper, we propose a novel linear actuator which 2 movers can be independently controlled using 3-phase and 6-phase superimposed currents for decreasing the size and weight of the system. The proposed linear actuator is driven by the operating principle of a vernier motor which is expected to achieve a high thrust force density per permanent magnet volume. Methods: The operating principle and the static thrust force characteristics of the proposed linear actuator are verified by an electromagnetic field analysis using 3-D finite element method, and the back electromotive force characteristics are also analyzed. In addition, the dynamic characteristics under position feedback control are analyzed. The control system uses a vector control using PID controller, and the control input is given by the 3-phase and 6-phase superimposed currents. Results: The static force characteristics were investigated. From the analyzed results, the force interference between the two movers was small. Moreover, the interference of the back electromotive force of the 3-phase and 6-phase movers were not observed. The movers could be independently driven under position feedback control using 3-phase and 6-phase superimposed currents. The dynamic characteristics analyses showed that the mover well followed a target position. From a step response, the time constant and the response of the position feedback system were investigated. Conclusion: This paper presents a linear vernier actuator with two movers. The basic structure and operating principle of the actuator were described. Moreover, the static characteristics and the dynamic characteristics under position feedback control were analyzed. It was found that the movers can be independently driven.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Roundabout Metering on the Operational Performance of Roundabout: A Case Study of Jawalakhel, Nepal Optimizing Performance at Signalized Intersections through Signal Coordination in Two Intersections of Nepal A Review on the Development and Need of Bicycle Level of Service A Feasibility Study of Public Transport of Panna City Madhya Pradesh A Review on Problems Faced Due to Poor Transportation Facilities in Small Urban Cities in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1