{"title":"多组分碳化物的SHS特征","authors":"N. A. Kochetov, I. Kovalev","doi":"10.17073/1997-308x-2022-4-58-66","DOIUrl":null,"url":null,"abstract":"Combustion of powders of transition metals of titanium PTS (average particle size 57 μm), zirconium PCRK-1 (12 μm), tantalum Ta PM-3 (8 μm), hafnium GFM-1 (4 μm), niobium NBP-1a (21 μm) with carbon black grade P-803 dispersion 1–2 μm was studied. The combustion process of the compressed samples (mass 2.5–6.9 g, height 1.2–1.7 cm, relative density 0.55–0.61) was performed in an inert argon medium at a pressure of 760 mmHg in the constant pressure chamber. Combinations were studied, Me1 + Me2 + Me3 + Me4 + 4C, Me1 + Me2 + Me3 + Me4 + Me5 + 5C. XRD patterns of the mixtures were recorded on a DRON-3М diffractometer (CuKα-radiation). Combustion product sections were studied using a LEO 1450 VP scanning electron microscope (Carl Zeiss, Germany). The fractional composition and particle size distribution of the mixture were determined according to standard procedure using a Microsizer-201C laser particle size analyzer. Combustion velocity, elongation of samples, phase composition of products were determined. The maximum combustion temperature of the mixture (Ti + Hf + Zr + Nb + Ta) + 5C was measured experimentally for the first time. The morphology and microstructure of the reaction products were also observed. Combustion products of mixtures (Ti + Zr + Nb + Ta) + 4C and (Ti + Zr + Nb + Hf) + 4C contain high entropy carbides, which are solid solutions with the same structural type B1 (space group Fm-3m) and having different cell parameters. Product samples of mixtures (Ti + Zr ++ Hf + Ta) + 4C and (Ti + Hf + Zr + Nb + Ta) + 5C contain high entropy and medium entropy carbides, also representing solid solutions with the same structural type B1 (space group Fm-3m). The results of this work can be used in the production of high-entropy and medium-entropy multicomponent carbides.","PeriodicalId":14693,"journal":{"name":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of SHS of multicomponent carbides\",\"authors\":\"N. A. Kochetov, I. Kovalev\",\"doi\":\"10.17073/1997-308x-2022-4-58-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combustion of powders of transition metals of titanium PTS (average particle size 57 μm), zirconium PCRK-1 (12 μm), tantalum Ta PM-3 (8 μm), hafnium GFM-1 (4 μm), niobium NBP-1a (21 μm) with carbon black grade P-803 dispersion 1–2 μm was studied. The combustion process of the compressed samples (mass 2.5–6.9 g, height 1.2–1.7 cm, relative density 0.55–0.61) was performed in an inert argon medium at a pressure of 760 mmHg in the constant pressure chamber. Combinations were studied, Me1 + Me2 + Me3 + Me4 + 4C, Me1 + Me2 + Me3 + Me4 + Me5 + 5C. XRD patterns of the mixtures were recorded on a DRON-3М diffractometer (CuKα-radiation). Combustion product sections were studied using a LEO 1450 VP scanning electron microscope (Carl Zeiss, Germany). The fractional composition and particle size distribution of the mixture were determined according to standard procedure using a Microsizer-201C laser particle size analyzer. Combustion velocity, elongation of samples, phase composition of products were determined. The maximum combustion temperature of the mixture (Ti + Hf + Zr + Nb + Ta) + 5C was measured experimentally for the first time. The morphology and microstructure of the reaction products were also observed. Combustion products of mixtures (Ti + Zr + Nb + Ta) + 4C and (Ti + Zr + Nb + Hf) + 4C contain high entropy carbides, which are solid solutions with the same structural type B1 (space group Fm-3m) and having different cell parameters. Product samples of mixtures (Ti + Zr ++ Hf + Ta) + 4C and (Ti + Hf + Zr + Nb + Ta) + 5C contain high entropy and medium entropy carbides, also representing solid solutions with the same structural type B1 (space group Fm-3m). The results of this work can be used in the production of high-entropy and medium-entropy multicomponent carbides.\",\"PeriodicalId\":14693,\"journal\":{\"name\":\"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/1997-308x-2022-4-58-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/1997-308x-2022-4-58-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combustion of powders of transition metals of titanium PTS (average particle size 57 μm), zirconium PCRK-1 (12 μm), tantalum Ta PM-3 (8 μm), hafnium GFM-1 (4 μm), niobium NBP-1a (21 μm) with carbon black grade P-803 dispersion 1–2 μm was studied. The combustion process of the compressed samples (mass 2.5–6.9 g, height 1.2–1.7 cm, relative density 0.55–0.61) was performed in an inert argon medium at a pressure of 760 mmHg in the constant pressure chamber. Combinations were studied, Me1 + Me2 + Me3 + Me4 + 4C, Me1 + Me2 + Me3 + Me4 + Me5 + 5C. XRD patterns of the mixtures were recorded on a DRON-3М diffractometer (CuKα-radiation). Combustion product sections were studied using a LEO 1450 VP scanning electron microscope (Carl Zeiss, Germany). The fractional composition and particle size distribution of the mixture were determined according to standard procedure using a Microsizer-201C laser particle size analyzer. Combustion velocity, elongation of samples, phase composition of products were determined. The maximum combustion temperature of the mixture (Ti + Hf + Zr + Nb + Ta) + 5C was measured experimentally for the first time. The morphology and microstructure of the reaction products were also observed. Combustion products of mixtures (Ti + Zr + Nb + Ta) + 4C and (Ti + Zr + Nb + Hf) + 4C contain high entropy carbides, which are solid solutions with the same structural type B1 (space group Fm-3m) and having different cell parameters. Product samples of mixtures (Ti + Zr ++ Hf + Ta) + 4C and (Ti + Hf + Zr + Nb + Ta) + 5C contain high entropy and medium entropy carbides, also representing solid solutions with the same structural type B1 (space group Fm-3m). The results of this work can be used in the production of high-entropy and medium-entropy multicomponent carbides.