基于单核苷酸变异再校准和全基因组测序图像分类的CNV精确检测

Qingjie Min , Xianfeng Li , Ruoyu Wang , Hongbo Ming , Kexin Wang , Xiangwen Hao , Yan Wang , Qimin Zhan
{"title":"基于单核苷酸变异再校准和全基因组测序图像分类的CNV精确检测","authors":"Qingjie Min ,&nbsp;Xianfeng Li ,&nbsp;Ruoyu Wang ,&nbsp;Hongbo Ming ,&nbsp;Kexin Wang ,&nbsp;Xiangwen Hao ,&nbsp;Yan Wang ,&nbsp;Qimin Zhan","doi":"10.1016/j.meomic.2020.100002","DOIUrl":null,"url":null,"abstract":"<div><p>Copy number variations (CNVs) play an important role in the genome aberrations and human diseases. Comprehensive discovery of CNVs from whole genome sequencing data remains difficult because of low sensitivity and high false detective rate (FDR). We presented a novel framework which integrated SNV-based recalibration probabilistic model and image classification architecture (ImageCNV) for CNVs discovery. A Naive Bayesian model and a deep neural network InceptionV3 were adopted to infer candidate CNVs, and we utilize the benchmark datasets to evaluate the performance of our framework. ImageCNV yielded comparable sensitivity and lower FDR, complementing other methods based on different signals and providing a new perspective for the detection of CNVs. ImageCNV is freely available at <span>https://github.com/minqing1/ImageCNV</span><svg><path></path></svg>.</p></div>","PeriodicalId":100914,"journal":{"name":"Medicine in Omics","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.meomic.2020.100002","citationCount":"0","resultStr":"{\"title\":\"Accurate detection of CNV based on single-nucleotide variants recalibration and image classification from whole genome sequencing\",\"authors\":\"Qingjie Min ,&nbsp;Xianfeng Li ,&nbsp;Ruoyu Wang ,&nbsp;Hongbo Ming ,&nbsp;Kexin Wang ,&nbsp;Xiangwen Hao ,&nbsp;Yan Wang ,&nbsp;Qimin Zhan\",\"doi\":\"10.1016/j.meomic.2020.100002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Copy number variations (CNVs) play an important role in the genome aberrations and human diseases. Comprehensive discovery of CNVs from whole genome sequencing data remains difficult because of low sensitivity and high false detective rate (FDR). We presented a novel framework which integrated SNV-based recalibration probabilistic model and image classification architecture (ImageCNV) for CNVs discovery. A Naive Bayesian model and a deep neural network InceptionV3 were adopted to infer candidate CNVs, and we utilize the benchmark datasets to evaluate the performance of our framework. ImageCNV yielded comparable sensitivity and lower FDR, complementing other methods based on different signals and providing a new perspective for the detection of CNVs. ImageCNV is freely available at <span>https://github.com/minqing1/ImageCNV</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":100914,\"journal\":{\"name\":\"Medicine in Omics\",\"volume\":\"1 \",\"pages\":\"Article 100002\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.meomic.2020.100002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine in Omics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259012492030002X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Omics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259012492030002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拷贝数变异(CNVs)在基因组畸变和人类疾病中起着重要作用。由于全基因组测序数据的低灵敏度和高误检率(FDR),从全基因组测序数据中全面发现CNVs仍然是困难的。本文提出了一种结合基于snv的再校准概率模型和图像分类架构(ImageCNV)的cnv发现框架。采用朴素贝叶斯模型和深度神经网络InceptionV3来推断候选cnv,并利用基准数据集评估框架的性能。ImageCNV具有相当的灵敏度和较低的FDR,与其他基于不同信号的方法相补充,为CNVs的检测提供了新的视角。ImageCNV可在https://github.com/minqing1/ImageCNV免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate detection of CNV based on single-nucleotide variants recalibration and image classification from whole genome sequencing

Copy number variations (CNVs) play an important role in the genome aberrations and human diseases. Comprehensive discovery of CNVs from whole genome sequencing data remains difficult because of low sensitivity and high false detective rate (FDR). We presented a novel framework which integrated SNV-based recalibration probabilistic model and image classification architecture (ImageCNV) for CNVs discovery. A Naive Bayesian model and a deep neural network InceptionV3 were adopted to infer candidate CNVs, and we utilize the benchmark datasets to evaluate the performance of our framework. ImageCNV yielded comparable sensitivity and lower FDR, complementing other methods based on different signals and providing a new perspective for the detection of CNVs. ImageCNV is freely available at https://github.com/minqing1/ImageCNV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional prediction and assignment of Clostridium botulinum type A1 operome: A quest for prioritizing drug targets Systems medicine framework for repurposable drug combinations for COVID-19 comorbidities The omics technologies and liquid biopsies: Advantages, limitations, applications Early-stage biomarkers identification by integrated genomic analysis in hepatocellular carcinoma Designing of multi-Epitope vaccine against spike glycoprotein of SARS-CoV-2 using immunoinformatics approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1