基于区间2型初始模糊集的模糊c -介质聚类

Nguyễn Anh Cường, D. Mai, Do Viet Duc, Trong Hop Dang, L. Ngo, L. T. Pham
{"title":"基于区间2型初始模糊集的模糊c -介质聚类","authors":"Nguyễn Anh Cường, D. Mai, Do Viet Duc, Trong Hop Dang, L. Ngo, L. T. Pham","doi":"10.1109/RIVF51545.2021.9642067","DOIUrl":null,"url":null,"abstract":"For clustering problems, each data sample has the potential to belong to many different clusters depending on the similarity. However, besides the degree of similarity and non-similarity, there is a degree of hesitation in determining whether or not a data sample belongs to a defined cluster. Besides the fuzzy c-means algorithm (FCM), another popular algorithm is fuzzy C-medoids clustering (FCMdd). FCMdd chooses several existing objects as the cluster centroids, while FCM considers the samples’ weighted average to be the cluster centroid. This subtle difference causes the FCMdd is more resistant to interference than FCM. Since noise samples will more easily affect the center of centroids of the FCM, it is easier to create clustering results with great accuracy. In this study, we proposed a method for extending the fuzzy c-medoids clustering based on interval type-2 intuitionistic fuzzy sets, named the interval type-2 intuitionistic fuzzy c-medoids clustering algorithm (IT2IFCMdd). With this combination, the proposed algorithm can take advantage of both the fuzzy c-medoids clustering (FCMdd) method and the interval type-2 intuitionistic fuzzy sets applied to the clustering problem. Experiments performed on data sets commonly used in machine learning show that the proposed method gives better clustering results in most experimental cases.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy C-Medoids Clustering Based on Interval Type-2 Inituitionistic Fuzzy Sets\",\"authors\":\"Nguyễn Anh Cường, D. Mai, Do Viet Duc, Trong Hop Dang, L. Ngo, L. T. Pham\",\"doi\":\"10.1109/RIVF51545.2021.9642067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For clustering problems, each data sample has the potential to belong to many different clusters depending on the similarity. However, besides the degree of similarity and non-similarity, there is a degree of hesitation in determining whether or not a data sample belongs to a defined cluster. Besides the fuzzy c-means algorithm (FCM), another popular algorithm is fuzzy C-medoids clustering (FCMdd). FCMdd chooses several existing objects as the cluster centroids, while FCM considers the samples’ weighted average to be the cluster centroid. This subtle difference causes the FCMdd is more resistant to interference than FCM. Since noise samples will more easily affect the center of centroids of the FCM, it is easier to create clustering results with great accuracy. In this study, we proposed a method for extending the fuzzy c-medoids clustering based on interval type-2 intuitionistic fuzzy sets, named the interval type-2 intuitionistic fuzzy c-medoids clustering algorithm (IT2IFCMdd). With this combination, the proposed algorithm can take advantage of both the fuzzy c-medoids clustering (FCMdd) method and the interval type-2 intuitionistic fuzzy sets applied to the clustering problem. Experiments performed on data sets commonly used in machine learning show that the proposed method gives better clustering results in most experimental cases.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"11 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于聚类问题,每个数据样本都有可能根据相似度属于许多不同的聚类。然而,除了相似度和非相似度之外,在确定数据样本是否属于已定义的聚类时还存在一定程度的犹豫。除了模糊c-均值算法(FCM)外,另一种流行的算法是模糊c-媒质聚类(FCMdd)。FCMdd选择几个现有的目标作为聚类质心,而FCM则将样本的加权平均值作为聚类质心。这种细微的差别使得FCMdd比FCM更能抵抗干扰。由于噪声样本更容易影响FCM的质心中心,因此更容易产生精度高的聚类结果。本文提出了一种基于区间2型直觉模糊集的模糊c-媒质聚类扩展方法,命名为区间2型直觉模糊c-媒质聚类算法(IT2IFCMdd)。该算法结合了模糊c-介质聚类(FCMdd)方法和区间2型直觉模糊集的优点,有效地解决了聚类问题。在机器学习中常用的数据集上进行的实验表明,在大多数实验情况下,所提出的方法具有更好的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy C-Medoids Clustering Based on Interval Type-2 Inituitionistic Fuzzy Sets
For clustering problems, each data sample has the potential to belong to many different clusters depending on the similarity. However, besides the degree of similarity and non-similarity, there is a degree of hesitation in determining whether or not a data sample belongs to a defined cluster. Besides the fuzzy c-means algorithm (FCM), another popular algorithm is fuzzy C-medoids clustering (FCMdd). FCMdd chooses several existing objects as the cluster centroids, while FCM considers the samples’ weighted average to be the cluster centroid. This subtle difference causes the FCMdd is more resistant to interference than FCM. Since noise samples will more easily affect the center of centroids of the FCM, it is easier to create clustering results with great accuracy. In this study, we proposed a method for extending the fuzzy c-medoids clustering based on interval type-2 intuitionistic fuzzy sets, named the interval type-2 intuitionistic fuzzy c-medoids clustering algorithm (IT2IFCMdd). With this combination, the proposed algorithm can take advantage of both the fuzzy c-medoids clustering (FCMdd) method and the interval type-2 intuitionistic fuzzy sets applied to the clustering problem. Experiments performed on data sets commonly used in machine learning show that the proposed method gives better clustering results in most experimental cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1