推进侵蚀控制分析:陆地激光扫描(TLS)和机器人全站仪技术在沉积物屏障截留测量中的比较研究

IF 2.3 Q2 REMOTE SENSING Applied Geomatics Pub Date : 2023-04-26 DOI:10.3390/geomatics3020019
Junshan Liu, R. Bugg, Cort W. Fisher
{"title":"推进侵蚀控制分析:陆地激光扫描(TLS)和机器人全站仪技术在沉积物屏障截留测量中的比较研究","authors":"Junshan Liu, R. Bugg, Cort W. Fisher","doi":"10.3390/geomatics3020019","DOIUrl":null,"url":null,"abstract":"Sediment Barriers (SBs) are crucial for effective erosion control, and understanding their capacities and limitations is essential for environmental protection. This study compares the accuracy and effectiveness of Terrestrial Laser Scanning (TLS) and Robotic Total Station (RTS) techniques for quantifying sediment retention in SBs. To achieve this, erosion tests were conducted in a full-scale testing apparatus with TLS and RTS methods to collect morphological data of sediment retention surfaces before and after each experiment. The acquired datasets were processed and integrated into a Building Information Modeling (BIM) platform to create Digital Elevation Models (DEMs). These were then used to calculate the volume of accumulated sediment upstream of the SB system. The results indicated that TLS and RTS techniques could effectively measure sediment retention in a full-scale testing environment. However, TLS proved to be more accurate, exhibiting a standard deviation of 0.41 ft3 in contrast to 1.94 ft3 for RTS and more efficient, requiring approximately 15% to 50% less time per test than RTS. The main conclusions of this study highlight the benefits of using TLS over RTS for sediment retention measurement and provide valuable insights for improving erosion control strategies and sediment barrier design.","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advancing Erosion Control Analysis: A Comparative Study of Terrestrial Laser Scanning (TLS) and Robotic Total Station Techniques for Sediment Barrier Retention Measurement\",\"authors\":\"Junshan Liu, R. Bugg, Cort W. Fisher\",\"doi\":\"10.3390/geomatics3020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sediment Barriers (SBs) are crucial for effective erosion control, and understanding their capacities and limitations is essential for environmental protection. This study compares the accuracy and effectiveness of Terrestrial Laser Scanning (TLS) and Robotic Total Station (RTS) techniques for quantifying sediment retention in SBs. To achieve this, erosion tests were conducted in a full-scale testing apparatus with TLS and RTS methods to collect morphological data of sediment retention surfaces before and after each experiment. The acquired datasets were processed and integrated into a Building Information Modeling (BIM) platform to create Digital Elevation Models (DEMs). These were then used to calculate the volume of accumulated sediment upstream of the SB system. The results indicated that TLS and RTS techniques could effectively measure sediment retention in a full-scale testing environment. However, TLS proved to be more accurate, exhibiting a standard deviation of 0.41 ft3 in contrast to 1.94 ft3 for RTS and more efficient, requiring approximately 15% to 50% less time per test than RTS. The main conclusions of this study highlight the benefits of using TLS over RTS for sediment retention measurement and provide valuable insights for improving erosion control strategies and sediment barrier design.\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geomatics3020019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geomatics3020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

摘要

泥沙屏障是有效控制侵蚀的关键,了解其能力和局限性对环境保护至关重要。本研究比较了陆地激光扫描(TLS)和机器人全站仪(RTS)技术在定量SBs沉积物滞留量方面的准确性和有效性。为此,在全尺寸试验装置上进行侵蚀试验,采用TLS和RTS方法,收集每次试验前后泥沙截留面形态数据。获取的数据集被处理并集成到建筑信息模型(BIM)平台中,以创建数字高程模型(dem)。然后用这些来计算SB系统上游累积沉积物的体积。结果表明,TLS和RTS技术可以在全尺寸测试环境中有效地测量沉积物截留。然而,TLS被证明更准确,其标准偏差为0.41 ft3,而RTS的标准偏差为1.94 ft3,并且效率更高,每次测试所需的时间比RTS少约15%至50%。本研究的主要结论强调了使用TLS而不是RTS进行泥沙保持测量的好处,并为改进侵蚀控制策略和泥沙屏障设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing Erosion Control Analysis: A Comparative Study of Terrestrial Laser Scanning (TLS) and Robotic Total Station Techniques for Sediment Barrier Retention Measurement
Sediment Barriers (SBs) are crucial for effective erosion control, and understanding their capacities and limitations is essential for environmental protection. This study compares the accuracy and effectiveness of Terrestrial Laser Scanning (TLS) and Robotic Total Station (RTS) techniques for quantifying sediment retention in SBs. To achieve this, erosion tests were conducted in a full-scale testing apparatus with TLS and RTS methods to collect morphological data of sediment retention surfaces before and after each experiment. The acquired datasets were processed and integrated into a Building Information Modeling (BIM) platform to create Digital Elevation Models (DEMs). These were then used to calculate the volume of accumulated sediment upstream of the SB system. The results indicated that TLS and RTS techniques could effectively measure sediment retention in a full-scale testing environment. However, TLS proved to be more accurate, exhibiting a standard deviation of 0.41 ft3 in contrast to 1.94 ft3 for RTS and more efficient, requiring approximately 15% to 50% less time per test than RTS. The main conclusions of this study highlight the benefits of using TLS over RTS for sediment retention measurement and provide valuable insights for improving erosion control strategies and sediment barrier design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geomatics
Applied Geomatics REMOTE SENSING-
CiteScore
5.40
自引率
3.70%
发文量
61
期刊介绍: Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences. The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology. Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements
期刊最新文献
Correction: The performance of landslides frequency-area distribution analyses using a newly developed fully automatic tool The effect of spatial lag on modeling geomatic covariates using analysis of variance Flood susceptibility mapping using machine learning and remote sensing data in the Southern Karun Basin, Iran Spatial assessment of groundwater potential zones using remote sensing, GIS and analytical hierarchy process: A case study of Siliguri subdivision, West Bengal Sequential Gaussian simulation for mapping the spatial variability of saturated soil hydraulic conductivity at watershed scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1