{"title":"旋转对横向各向同性热弹性半空间中波传播的影响","authors":"R. Gupta, R. Gupta","doi":"10.1155/2014/621928","DOIUrl":null,"url":null,"abstract":"The present study is concerned with the effect of rotation on the propagation of plane waves in a transversely isotropic medium in the context of thermoelasticity theory of GN theory of types II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasilongitudinal wave. The slowest of them is a thermal wave. The remaining is called quasitransverse wave. The prefix “quasi” refers to their polarizations being nearly, but not exactly, parallel or perpendicular to the direction of propagation. The polarizations of these three waves are not mutually orthogonal. After imposing the appropriate boundary conditions, the amplitudes of reflection coefficients have been obtained. Numerically simulated results have been plotted graphically with respect to frequency to evince the effect of rotation and anisotropy.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"27 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Rotation on Propagation of Waves in Transversely Isotropic Thermoelastic Half-Space\",\"authors\":\"R. Gupta, R. Gupta\",\"doi\":\"10.1155/2014/621928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study is concerned with the effect of rotation on the propagation of plane waves in a transversely isotropic medium in the context of thermoelasticity theory of GN theory of types II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasilongitudinal wave. The slowest of them is a thermal wave. The remaining is called quasitransverse wave. The prefix “quasi” refers to their polarizations being nearly, but not exactly, parallel or perpendicular to the direction of propagation. The polarizations of these three waves are not mutually orthogonal. After imposing the appropriate boundary conditions, the amplitudes of reflection coefficients have been obtained. Numerically simulated results have been plotted graphically with respect to frequency to evince the effect of rotation and anisotropy.\",\"PeriodicalId\":13278,\"journal\":{\"name\":\"Indian Journal of Materials Science\",\"volume\":\"27 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/621928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/621928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Rotation on Propagation of Waves in Transversely Isotropic Thermoelastic Half-Space
The present study is concerned with the effect of rotation on the propagation of plane waves in a transversely isotropic medium in the context of thermoelasticity theory of GN theory of types II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasilongitudinal wave. The slowest of them is a thermal wave. The remaining is called quasitransverse wave. The prefix “quasi” refers to their polarizations being nearly, but not exactly, parallel or perpendicular to the direction of propagation. The polarizations of these three waves are not mutually orthogonal. After imposing the appropriate boundary conditions, the amplitudes of reflection coefficients have been obtained. Numerically simulated results have been plotted graphically with respect to frequency to evince the effect of rotation and anisotropy.