M. Khalaquzzaman, Seung Jun Lee, Muhammed Mufazzal Hossen
{"title":"考虑制造质量保证过程的核电厂安全级设备可靠性评估","authors":"M. Khalaquzzaman, Seung Jun Lee, Muhammed Mufazzal Hossen","doi":"10.3390/jne4020030","DOIUrl":null,"url":null,"abstract":"Quality and safety are intensely related and go hand in hand. Quality of the safety-grade equipment is very important for the safety of a nuclear power plant (NPP) and achieving production goals. During manufacturing of plant components or equipment, deviation from the design might occur at different stages of manufacturing for various reasons, such as a lack of skilled manpower, deviation of materials, human errors, malfunction of equipment, violation of manufacturing procedure, etc. These deviations can be assessed cautiously and taken into consideration in the final safety analysis report (FSAR) before issuing an operating license. In this paper, we propose a Bayesian belief network for quality assessment of safety class equipment of NPPs with a few examples. The proposed procedure is a holistic approach for estimation of equipment failure probability considering manufacturing deviations and errors. Case studies for safety-class dry transformers and reactor pressurizers employing the proposed method are also presented in this article. This study provides insights for probabilistic safety assessment engineers and nuclear plant regulators for improved assessment of NPP safety.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability Assessment of NPP Safety Class Equipment Considering the Manufacturing Quality Assurance Process\",\"authors\":\"M. Khalaquzzaman, Seung Jun Lee, Muhammed Mufazzal Hossen\",\"doi\":\"10.3390/jne4020030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quality and safety are intensely related and go hand in hand. Quality of the safety-grade equipment is very important for the safety of a nuclear power plant (NPP) and achieving production goals. During manufacturing of plant components or equipment, deviation from the design might occur at different stages of manufacturing for various reasons, such as a lack of skilled manpower, deviation of materials, human errors, malfunction of equipment, violation of manufacturing procedure, etc. These deviations can be assessed cautiously and taken into consideration in the final safety analysis report (FSAR) before issuing an operating license. In this paper, we propose a Bayesian belief network for quality assessment of safety class equipment of NPPs with a few examples. The proposed procedure is a holistic approach for estimation of equipment failure probability considering manufacturing deviations and errors. Case studies for safety-class dry transformers and reactor pressurizers employing the proposed method are also presented in this article. This study provides insights for probabilistic safety assessment engineers and nuclear plant regulators for improved assessment of NPP safety.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jne4020030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne4020030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Reliability Assessment of NPP Safety Class Equipment Considering the Manufacturing Quality Assurance Process
Quality and safety are intensely related and go hand in hand. Quality of the safety-grade equipment is very important for the safety of a nuclear power plant (NPP) and achieving production goals. During manufacturing of plant components or equipment, deviation from the design might occur at different stages of manufacturing for various reasons, such as a lack of skilled manpower, deviation of materials, human errors, malfunction of equipment, violation of manufacturing procedure, etc. These deviations can be assessed cautiously and taken into consideration in the final safety analysis report (FSAR) before issuing an operating license. In this paper, we propose a Bayesian belief network for quality assessment of safety class equipment of NPPs with a few examples. The proposed procedure is a holistic approach for estimation of equipment failure probability considering manufacturing deviations and errors. Case studies for safety-class dry transformers and reactor pressurizers employing the proposed method are also presented in this article. This study provides insights for probabilistic safety assessment engineers and nuclear plant regulators for improved assessment of NPP safety.
期刊介绍:
The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.