支持困倦检测系统的轻量级卷积神经网络眼状态检测器

Duy-Linh Nguyen, M. D. Putro, K. Jo
{"title":"支持困倦检测系统的轻量级卷积神经网络眼状态检测器","authors":"Duy-Linh Nguyen, M. D. Putro, K. Jo","doi":"10.1109/IECON43393.2020.9254858","DOIUrl":null,"url":null,"abstract":"The drowsiness is the leading cause of many accidents on the road. These causes can be reduced by using the drowsiness alarm or drowsiness detection system. These systems monitor drivers while driving and alarm when they don’t focus or have some abnormal signs in the driver’s body. Currently, most methodologies use the analysis of human behaviors, vehicle behaviors, and human physiological conditions. This paper regards eyes status analysis based on deep learning method using proposed Convolutional Neural Networks (CNN) with two stages are face detection and eyes classification. The face detector employs a single detector module and shallow layer, then the eyes classifier using simple CNN without ignoring the accuracy. As a result, the average speed was tested in real-time by 50.03 fps (frames per second) on Intel Core I7-4770 CPU @ 3.40 GHz.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"477-482"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eyes Status Detector Based on Light-weight Convolutional Neural Networks supporting for Drowsiness Detection System\",\"authors\":\"Duy-Linh Nguyen, M. D. Putro, K. Jo\",\"doi\":\"10.1109/IECON43393.2020.9254858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drowsiness is the leading cause of many accidents on the road. These causes can be reduced by using the drowsiness alarm or drowsiness detection system. These systems monitor drivers while driving and alarm when they don’t focus or have some abnormal signs in the driver’s body. Currently, most methodologies use the analysis of human behaviors, vehicle behaviors, and human physiological conditions. This paper regards eyes status analysis based on deep learning method using proposed Convolutional Neural Networks (CNN) with two stages are face detection and eyes classification. The face detector employs a single detector module and shallow layer, then the eyes classifier using simple CNN without ignoring the accuracy. As a result, the average speed was tested in real-time by 50.03 fps (frames per second) on Intel Core I7-4770 CPU @ 3.40 GHz.\",\"PeriodicalId\":13045,\"journal\":{\"name\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"1 1\",\"pages\":\"477-482\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON43393.2020.9254858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9254858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

困倦是道路上许多事故的主要原因。这些原因可以通过使用困倦警报或困倦检测系统来减少。这些系统在驾驶时监测驾驶员,并在驾驶员注意力不集中或身体出现异常迹象时发出警报。目前,大多数方法都是分析人的行为、车辆的行为和人的生理状况。本文采用提出的卷积神经网络(CNN)进行基于深度学习的眼睛状态分析,分为人脸检测和眼睛分类两个阶段。人脸检测器采用单个检测器模块和浅层,然后眼睛分类器使用简单的CNN而不忽略准确率。因此,在英特尔酷睿I7-4770 CPU @ 3.40 GHz上实时测试了平均速度为50.03 fps(每秒帧数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eyes Status Detector Based on Light-weight Convolutional Neural Networks supporting for Drowsiness Detection System
The drowsiness is the leading cause of many accidents on the road. These causes can be reduced by using the drowsiness alarm or drowsiness detection system. These systems monitor drivers while driving and alarm when they don’t focus or have some abnormal signs in the driver’s body. Currently, most methodologies use the analysis of human behaviors, vehicle behaviors, and human physiological conditions. This paper regards eyes status analysis based on deep learning method using proposed Convolutional Neural Networks (CNN) with two stages are face detection and eyes classification. The face detector employs a single detector module and shallow layer, then the eyes classifier using simple CNN without ignoring the accuracy. As a result, the average speed was tested in real-time by 50.03 fps (frames per second) on Intel Core I7-4770 CPU @ 3.40 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DCT/PET Submodule with Symmetrical Bipolar DC Outputs High-precision Sensorless Control Based on Magnetic Flux/Current Method for SRM Starting/Generating System Implementation of a Wireless Sensor Network Designed to Be Embedded in Reinforced Concrete H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps Attitude stabilization for aircraft under angular velocity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1