锰分离与回收的潜在湿法冶金工艺综述

Dr.Sanghamitra Pradhan, Ms.Muskan Ram, Prof.Sujata Mishra
{"title":"锰分离与回收的潜在湿法冶金工艺综述","authors":"Dr.Sanghamitra Pradhan, Ms.Muskan Ram, Prof.Sujata Mishra","doi":"10.30544/560","DOIUrl":null,"url":null,"abstract":"With rapid economic progress worldwide, the search for new resources for materials has become a priority due to mineral resource depletion. Enhanced requirements for manganese alloys and compounds for several commercial applications created a desperate demand for manganese recovery technologies from primary as well as secondary resources. The future demand for manganese alloys and compounds is expected to increase. The growing need of electrolytic manganese dioxide (EMD) for different battery usage in automobile and energy sectors could create a gap in the supply and demand of manganese. There is an urgent necessity for eco-friendly and efficient technologies to boost the production of manganese from low-grade ores as well as postconsumer products. The framework of effective leaching processes and proper solvent extraction techniques for the recovery of manganese could be a novel pathway to get a clean, green and healthy environment for a sustainable future in the automotive and energy segment where this metal has a significant contribution.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview on potential hydrometallurgical processes for separation and recovery of manganese\",\"authors\":\"Dr.Sanghamitra Pradhan, Ms.Muskan Ram, Prof.Sujata Mishra\",\"doi\":\"10.30544/560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With rapid economic progress worldwide, the search for new resources for materials has become a priority due to mineral resource depletion. Enhanced requirements for manganese alloys and compounds for several commercial applications created a desperate demand for manganese recovery technologies from primary as well as secondary resources. The future demand for manganese alloys and compounds is expected to increase. The growing need of electrolytic manganese dioxide (EMD) for different battery usage in automobile and energy sectors could create a gap in the supply and demand of manganese. There is an urgent necessity for eco-friendly and efficient technologies to boost the production of manganese from low-grade ores as well as postconsumer products. The framework of effective leaching processes and proper solvent extraction techniques for the recovery of manganese could be a novel pathway to get a clean, green and healthy environment for a sustainable future in the automotive and energy segment where this metal has a significant contribution.\",\"PeriodicalId\":18466,\"journal\":{\"name\":\"Metallurgical and Materials Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30544/560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着世界经济的迅速发展,由于矿物资源的枯竭,寻找新的材料资源已成为一个优先事项。一些商业应用对锰合金和锰化合物的需求增加,对初级和次级资源的锰回收技术产生了迫切的需求。未来对锰合金和锰化合物的需求预计会增加。汽车和能源行业对电解二氧化锰(EMD)的需求不断增长,可能会造成锰的供需缺口。迫切需要环保高效的技术来促进低品位矿石锰的生产以及后消费产品。有效的浸出工艺框架和适当的溶剂萃取技术可以为锰的回收提供一个新的途径,为汽车和能源领域的可持续未来提供清洁、绿色和健康的环境,在这些领域,锰具有重要的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An overview on potential hydrometallurgical processes for separation and recovery of manganese
With rapid economic progress worldwide, the search for new resources for materials has become a priority due to mineral resource depletion. Enhanced requirements for manganese alloys and compounds for several commercial applications created a desperate demand for manganese recovery technologies from primary as well as secondary resources. The future demand for manganese alloys and compounds is expected to increase. The growing need of electrolytic manganese dioxide (EMD) for different battery usage in automobile and energy sectors could create a gap in the supply and demand of manganese. There is an urgent necessity for eco-friendly and efficient technologies to boost the production of manganese from low-grade ores as well as postconsumer products. The framework of effective leaching processes and proper solvent extraction techniques for the recovery of manganese could be a novel pathway to get a clean, green and healthy environment for a sustainable future in the automotive and energy segment where this metal has a significant contribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mechanical-Elastic Parameters of Reservoir Rocks with Respect to the Purpose of Permanent CO2 Storage Mechanical and Thermal Properties of Polyurethane-Palm Fronds Ash Composites Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications Review Of Grain Refinement Performance Of Aluminium Cast Alloys In Situ Production of B4C and FeV Enriched Composite Surface on Low Carbon Steel by Cast Sintering Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1