气溶胶预测的卫星遥感与深度学习

Nikola S. Mirkov, Dušan S. Radivojević, I. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić
{"title":"气溶胶预测的卫星遥感与深度学习","authors":"Nikola S. Mirkov, Dušan S. Radivojević, I. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić","doi":"10.5937/vojtehg71-40391","DOIUrl":null,"url":null,"abstract":"Introduction/purpose: The paper presents a new state-of-the-art method that involves NASA satellite imagery with the latest deep learning model for a spatiotemporal sequence forecasting problem. Satellite-retrieved aerosol information is very useful in many fields such as PM prediction or COVID-19 transmission. The input data set was MODAL2_E_AER_OD which presents global AOT for every 8 days from Terra/MODIS. The implemented machine learning algorithm was built with ConvLSTM2D layers in Keras. The obtained results were compared with the new CNN LSTM model. Methods: Computational methods of Machine Learning, Artificial Neural Networks, Deep Learning. Results: The results show global AOT prediction obtained using satellite digital imagery as an input. Conclusion: The results show that the ConvLSTM developed model could be used for global AOT prediction, as well as for PM and COVID-19 transmission.","PeriodicalId":30576,"journal":{"name":"Vojnotehnicki Glasnik","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite remote sensing and deep learning for aerosols prediction\",\"authors\":\"Nikola S. Mirkov, Dušan S. Radivojević, I. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić\",\"doi\":\"10.5937/vojtehg71-40391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction/purpose: The paper presents a new state-of-the-art method that involves NASA satellite imagery with the latest deep learning model for a spatiotemporal sequence forecasting problem. Satellite-retrieved aerosol information is very useful in many fields such as PM prediction or COVID-19 transmission. The input data set was MODAL2_E_AER_OD which presents global AOT for every 8 days from Terra/MODIS. The implemented machine learning algorithm was built with ConvLSTM2D layers in Keras. The obtained results were compared with the new CNN LSTM model. Methods: Computational methods of Machine Learning, Artificial Neural Networks, Deep Learning. Results: The results show global AOT prediction obtained using satellite digital imagery as an input. Conclusion: The results show that the ConvLSTM developed model could be used for global AOT prediction, as well as for PM and COVID-19 transmission.\",\"PeriodicalId\":30576,\"journal\":{\"name\":\"Vojnotehnicki Glasnik\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vojnotehnicki Glasnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/vojtehg71-40391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vojnotehnicki Glasnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/vojtehg71-40391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍/目的:本文提出了一种新的最先进的方法,该方法涉及NASA卫星图像和最新的深度学习模型,用于时空序列预测问题。卫星获取的气溶胶信息在PM预测或COVID-19传播等许多领域非常有用。输入数据集为MODAL2_E_AER_OD,表示Terra/MODIS每8天的全球AOT。实现的机器学习算法在Keras中使用ConvLSTM2D层构建。将得到的结果与新的CNN LSTM模型进行了比较。方法:机器学习、人工神经网络、深度学习的计算方法。结果:利用卫星数字图像作为输入,获得了全球AOT预测结果。结论:ConvLSTM建立的模型可用于全球AOT预测,也可用于PM和COVID-19传播预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Satellite remote sensing and deep learning for aerosols prediction
Introduction/purpose: The paper presents a new state-of-the-art method that involves NASA satellite imagery with the latest deep learning model for a spatiotemporal sequence forecasting problem. Satellite-retrieved aerosol information is very useful in many fields such as PM prediction or COVID-19 transmission. The input data set was MODAL2_E_AER_OD which presents global AOT for every 8 days from Terra/MODIS. The implemented machine learning algorithm was built with ConvLSTM2D layers in Keras. The obtained results were compared with the new CNN LSTM model. Methods: Computational methods of Machine Learning, Artificial Neural Networks, Deep Learning. Results: The results show global AOT prediction obtained using satellite digital imagery as an input. Conclusion: The results show that the ConvLSTM developed model could be used for global AOT prediction, as well as for PM and COVID-19 transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊最新文献
Data security in mobile healthcare On the spectral radius of VDB graph matrices Numerical methods and their application in dynamics of structures Application of the modeling method to the calculation of the probability of hitting a stationary target during the fire action of a tank squad in defense Supersymmetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1