MSATS:通过文本摘要进行多语言情感分析

Rupal Bhargava, Yashvardhan Sharma
{"title":"MSATS:通过文本摘要进行多语言情感分析","authors":"Rupal Bhargava, Yashvardhan Sharma","doi":"10.1109/CONFLUENCE.2017.7943126","DOIUrl":null,"url":null,"abstract":"Sentiment Analysis has been a keen research area for past few years. Though much of the exploration that has been done supports English language only. This paper proposes a method using which one can analyze different languages to find sentiments in them and perform sentiment analysis. The method leverages different techniques of machine learning to analyze the text. Machine translation is used in the system to provide with the feature of dealing with different languages. After the machine translation, text is processed for finding the sentiments in the text. With the advent of blogs, forums and online reviews there is substantial text present on internet that can be used to analyze the sentiment about a particular subject or an object. Hence to reduce the processing it is beneficial to extract the important text present in it. So the system proposed uses text summarization process to extract important parts of text and then uses it to analyze the sentiments about the particular subject and its aspects.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"23 1","pages":"71-76"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"MSATS: Multilingual sentiment analysis via text summarization\",\"authors\":\"Rupal Bhargava, Yashvardhan Sharma\",\"doi\":\"10.1109/CONFLUENCE.2017.7943126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment Analysis has been a keen research area for past few years. Though much of the exploration that has been done supports English language only. This paper proposes a method using which one can analyze different languages to find sentiments in them and perform sentiment analysis. The method leverages different techniques of machine learning to analyze the text. Machine translation is used in the system to provide with the feature of dealing with different languages. After the machine translation, text is processed for finding the sentiments in the text. With the advent of blogs, forums and online reviews there is substantial text present on internet that can be used to analyze the sentiment about a particular subject or an object. Hence to reduce the processing it is beneficial to extract the important text present in it. So the system proposed uses text summarization process to extract important parts of text and then uses it to analyze the sentiments about the particular subject and its aspects.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"23 1\",\"pages\":\"71-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

情感分析在过去几年一直是一个热门的研究领域。尽管已经完成的许多探索只支持英语。本文提出了一种语言分析方法,利用该方法可以在不同的语言中发现情感并进行情感分析。该方法利用不同的机器学习技术来分析文本。系统采用机器翻译,具有处理不同语言的特点。机器翻译后,对文本进行处理,以找到文本中的情感。随着博客、论坛和在线评论的出现,互联网上有大量的文本可以用来分析对特定主题或对象的情绪。因此,为了减少处理,提取其中的重要文本是有益的。因此,系统提出采用文本摘要的方法提取文本的重要部分,然后用它来分析对特定主题及其方面的情感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSATS: Multilingual sentiment analysis via text summarization
Sentiment Analysis has been a keen research area for past few years. Though much of the exploration that has been done supports English language only. This paper proposes a method using which one can analyze different languages to find sentiments in them and perform sentiment analysis. The method leverages different techniques of machine learning to analyze the text. Machine translation is used in the system to provide with the feature of dealing with different languages. After the machine translation, text is processed for finding the sentiments in the text. With the advent of blogs, forums and online reviews there is substantial text present on internet that can be used to analyze the sentiment about a particular subject or an object. Hence to reduce the processing it is beneficial to extract the important text present in it. So the system proposed uses text summarization process to extract important parts of text and then uses it to analyze the sentiments about the particular subject and its aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1