{"title":"基于萤火虫优化算法和模糊逻辑的云服务组合","authors":"Wenzhi Wang, Zhanqiao Liu","doi":"10.14569/ijacsa.2023.0140383","DOIUrl":null,"url":null,"abstract":"—Cloud computing involves the dynamic provision of virtualized and scalable resources over the Internet as services. Different types of services with the same functionality but different non-functionality features may be delivered in a cloud environment in response to customer requests, which may need to be combined to satisfy the customer's complex requirements. Recent research has focused on combining unique and loosely-coupled services into a preferred system. An optimized composite service consists of formerly existing single and simple services combined to provide an optimal composite service, thereby improving the quality of service (QoS). In recent years, cloud computing has driven the rapid proliferation of multi-provision cloud service compositions, in which cloud service providers can provide multiple services simultaneously. Service composition fulfils a variety of user needs in a variety of scenarios. The composite request (service request) in a multi-cloud environment requires atomic services (service candidates) located in multiple clouds. Service composition combines atomic services from multiple clouds into a single service. Since cloud services are rapidly growing and their Quality of Service (QoS) is widely varying, finding the necessary services and composing them with quality assurances is an increasingly challenging technical task. This paper presents a method that uses the firefly optimization algorithm (FOA) and fuzzy logic to balance multiple QoS factors and satisfy service composition constraints. Experimental results prove that the proposed method outperforms previous ones in terms of response time, availability, and energy consumption.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"47 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cloud Service Composition using Firefly Optimization Algorithm and Fuzzy Logic\",\"authors\":\"Wenzhi Wang, Zhanqiao Liu\",\"doi\":\"10.14569/ijacsa.2023.0140383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Cloud computing involves the dynamic provision of virtualized and scalable resources over the Internet as services. Different types of services with the same functionality but different non-functionality features may be delivered in a cloud environment in response to customer requests, which may need to be combined to satisfy the customer's complex requirements. Recent research has focused on combining unique and loosely-coupled services into a preferred system. An optimized composite service consists of formerly existing single and simple services combined to provide an optimal composite service, thereby improving the quality of service (QoS). In recent years, cloud computing has driven the rapid proliferation of multi-provision cloud service compositions, in which cloud service providers can provide multiple services simultaneously. Service composition fulfils a variety of user needs in a variety of scenarios. The composite request (service request) in a multi-cloud environment requires atomic services (service candidates) located in multiple clouds. Service composition combines atomic services from multiple clouds into a single service. Since cloud services are rapidly growing and their Quality of Service (QoS) is widely varying, finding the necessary services and composing them with quality assurances is an increasingly challenging technical task. This paper presents a method that uses the firefly optimization algorithm (FOA) and fuzzy logic to balance multiple QoS factors and satisfy service composition constraints. Experimental results prove that the proposed method outperforms previous ones in terms of response time, availability, and energy consumption.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Cloud Service Composition using Firefly Optimization Algorithm and Fuzzy Logic
—Cloud computing involves the dynamic provision of virtualized and scalable resources over the Internet as services. Different types of services with the same functionality but different non-functionality features may be delivered in a cloud environment in response to customer requests, which may need to be combined to satisfy the customer's complex requirements. Recent research has focused on combining unique and loosely-coupled services into a preferred system. An optimized composite service consists of formerly existing single and simple services combined to provide an optimal composite service, thereby improving the quality of service (QoS). In recent years, cloud computing has driven the rapid proliferation of multi-provision cloud service compositions, in which cloud service providers can provide multiple services simultaneously. Service composition fulfils a variety of user needs in a variety of scenarios. The composite request (service request) in a multi-cloud environment requires atomic services (service candidates) located in multiple clouds. Service composition combines atomic services from multiple clouds into a single service. Since cloud services are rapidly growing and their Quality of Service (QoS) is widely varying, finding the necessary services and composing them with quality assurances is an increasingly challenging technical task. This paper presents a method that uses the firefly optimization algorithm (FOA) and fuzzy logic to balance multiple QoS factors and satisfy service composition constraints. Experimental results prove that the proposed method outperforms previous ones in terms of response time, availability, and energy consumption.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications