{"title":"阿尔及利亚东北部安纳巴省使用WEAP模型模拟当前和未来用水需求:案例研究","authors":"Abdel-Fatah Berredjem, Ahlem Boumaiza, A. Hani","doi":"10.2166/aqua.2023.118","DOIUrl":null,"url":null,"abstract":"\n The Annaba province in Algeria is currently facing significant challenges due to water shortages and intermittent water distribution. This study utilizes the Water Evaluation And Planning (WEAP) system to assess present and future water supply and demands in Annaba province, Algeria. Five scenarios, including a reference, climate change, desalination, leakage reduction, and water reuse, are evaluated. The analysis reveals that the region faces significant water shortages and intermittent distribution, with projected annual water demand reaching 148 Mm3 by 2070. Climate change amplifies the demand by 8%, resulting in a projected water demand of 151 Mm3 by 2070. The industrial sector exhibits the highest unmet water demand, while the domestic and agricultural sectors also face challenges. Alternative scenarios, such as water efficiency and desalination, offer potential for eliminating industrial unmet water demand. Scenario 5 (managed aquifer recharge) reduces industrial unmet water demands by 36% to 23 Mm3 by 2070, while scenario 4 (leakage reduction and water reuse) decreases unmet domestic demands to 24 Mm3. This study emphasizes the need for water management strategies including efficient water use, infrastructure investment, public education on conservation and reuse, and industry adoption of water-saving technologies. Overall, this study addresses the difficulties and challenges associated with water scarcity in Annaba province.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of current and future water demands using the WEAP model in the Annaba province, Northeastern Algeria: a case study\",\"authors\":\"Abdel-Fatah Berredjem, Ahlem Boumaiza, A. Hani\",\"doi\":\"10.2166/aqua.2023.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Annaba province in Algeria is currently facing significant challenges due to water shortages and intermittent water distribution. This study utilizes the Water Evaluation And Planning (WEAP) system to assess present and future water supply and demands in Annaba province, Algeria. Five scenarios, including a reference, climate change, desalination, leakage reduction, and water reuse, are evaluated. The analysis reveals that the region faces significant water shortages and intermittent distribution, with projected annual water demand reaching 148 Mm3 by 2070. Climate change amplifies the demand by 8%, resulting in a projected water demand of 151 Mm3 by 2070. The industrial sector exhibits the highest unmet water demand, while the domestic and agricultural sectors also face challenges. Alternative scenarios, such as water efficiency and desalination, offer potential for eliminating industrial unmet water demand. Scenario 5 (managed aquifer recharge) reduces industrial unmet water demands by 36% to 23 Mm3 by 2070, while scenario 4 (leakage reduction and water reuse) decreases unmet domestic demands to 24 Mm3. This study emphasizes the need for water management strategies including efficient water use, infrastructure investment, public education on conservation and reuse, and industry adoption of water-saving technologies. Overall, this study addresses the difficulties and challenges associated with water scarcity in Annaba province.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2023.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/aqua.2023.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Simulation of current and future water demands using the WEAP model in the Annaba province, Northeastern Algeria: a case study
The Annaba province in Algeria is currently facing significant challenges due to water shortages and intermittent water distribution. This study utilizes the Water Evaluation And Planning (WEAP) system to assess present and future water supply and demands in Annaba province, Algeria. Five scenarios, including a reference, climate change, desalination, leakage reduction, and water reuse, are evaluated. The analysis reveals that the region faces significant water shortages and intermittent distribution, with projected annual water demand reaching 148 Mm3 by 2070. Climate change amplifies the demand by 8%, resulting in a projected water demand of 151 Mm3 by 2070. The industrial sector exhibits the highest unmet water demand, while the domestic and agricultural sectors also face challenges. Alternative scenarios, such as water efficiency and desalination, offer potential for eliminating industrial unmet water demand. Scenario 5 (managed aquifer recharge) reduces industrial unmet water demands by 36% to 23 Mm3 by 2070, while scenario 4 (leakage reduction and water reuse) decreases unmet domestic demands to 24 Mm3. This study emphasizes the need for water management strategies including efficient water use, infrastructure investment, public education on conservation and reuse, and industry adoption of water-saving technologies. Overall, this study addresses the difficulties and challenges associated with water scarcity in Annaba province.