核磁共振引导下经颅聚焦超声治疗特发性震颤的自动规划。

Frontiers in neuroimaging Pub Date : 2023-10-26 eCollection Date: 2023-01-01 DOI:10.3389/fnimg.2023.1272061
Jan Klein, Annika Gerken, Niklas Agethen, Sven Rothlübbers, Neeraj Upadhyay, Veronika Purrer, Carsten Schmeel, Valeri Borger, Maya Kovalevsky, Itay Rachmilevitch, Yeruham Shapira, Ullrich Wüllner, Jürgen Jenne
{"title":"核磁共振引导下经颅聚焦超声治疗特发性震颤的自动规划。","authors":"Jan Klein, Annika Gerken, Niklas Agethen, Sven Rothlübbers, Neeraj Upadhyay, Veronika Purrer, Carsten Schmeel, Valeri Borger, Maya Kovalevsky, Itay Rachmilevitch, Yeruham Shapira, Ullrich Wüllner, Jürgen Jenne","doi":"10.3389/fnimg.2023.1272061","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Transcranial focused ultrasound therapy (tcFUS) offers precise thermal ablation for treating Parkinson's disease and essential tremor. However, the manual fine-tuning of fiber tracking and segmentation required for accurate treatment planning is time-consuming and demands expert knowledge of complex neuroimaging tools. This raises the question of whether a fully automated pipeline is feasible or if manual intervention remains necessary.</p><p><strong>Methods: </strong>We investigate the dependence on fiber tractography algorithms, segmentation approaches, and degrees of automation, specifically for essential tremor therapy planning. For that purpose, we compare an automatic pipeline with a manual approach that requires the manual definition of the target point and is based on FMRIB software library (FSL) and other open-source tools.</p><p><strong>Results: </strong>Our findings demonstrate the high feasibility of automatic fiber tracking and the automated determination of standard treatment coordinates. Employing an automatic fiber tracking approach and deep learning (DL)-supported standard coordinate calculation, we achieve anatomically meaningful results comparable to a manually performed FSL-based pipeline. Individual cases may still exhibit variations, often stemming from differences in region of interest (ROI) segmentation. Notably, the DL-based approach outperforms registration-based methods in producing accurate segmentations. Precise ROI segmentation proves crucial, surpassing the importance of fine-tuning parameters or selecting algorithms. Correct thalamus and red nucleus segmentation play vital roles in ensuring accurate pathway computation.</p><p><strong>Conclusion: </strong>This study highlights the potential for automation in fiber tracking algorithms for tcFUS therapy, but acknowledges the ongoing need for expert verification and integration of anatomical expertise in treatment planning.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1272061"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic planning of MR-guided transcranial focused ultrasound treatment for essential tremor.\",\"authors\":\"Jan Klein, Annika Gerken, Niklas Agethen, Sven Rothlübbers, Neeraj Upadhyay, Veronika Purrer, Carsten Schmeel, Valeri Borger, Maya Kovalevsky, Itay Rachmilevitch, Yeruham Shapira, Ullrich Wüllner, Jürgen Jenne\",\"doi\":\"10.3389/fnimg.2023.1272061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Transcranial focused ultrasound therapy (tcFUS) offers precise thermal ablation for treating Parkinson's disease and essential tremor. However, the manual fine-tuning of fiber tracking and segmentation required for accurate treatment planning is time-consuming and demands expert knowledge of complex neuroimaging tools. This raises the question of whether a fully automated pipeline is feasible or if manual intervention remains necessary.</p><p><strong>Methods: </strong>We investigate the dependence on fiber tractography algorithms, segmentation approaches, and degrees of automation, specifically for essential tremor therapy planning. For that purpose, we compare an automatic pipeline with a manual approach that requires the manual definition of the target point and is based on FMRIB software library (FSL) and other open-source tools.</p><p><strong>Results: </strong>Our findings demonstrate the high feasibility of automatic fiber tracking and the automated determination of standard treatment coordinates. Employing an automatic fiber tracking approach and deep learning (DL)-supported standard coordinate calculation, we achieve anatomically meaningful results comparable to a manually performed FSL-based pipeline. Individual cases may still exhibit variations, often stemming from differences in region of interest (ROI) segmentation. Notably, the DL-based approach outperforms registration-based methods in producing accurate segmentations. Precise ROI segmentation proves crucial, surpassing the importance of fine-tuning parameters or selecting algorithms. Correct thalamus and red nucleus segmentation play vital roles in ensuring accurate pathway computation.</p><p><strong>Conclusion: </strong>This study highlights the potential for automation in fiber tracking algorithms for tcFUS therapy, but acknowledges the ongoing need for expert verification and integration of anatomical expertise in treatment planning.</p>\",\"PeriodicalId\":73094,\"journal\":{\"name\":\"Frontiers in neuroimaging\",\"volume\":\"2 \",\"pages\":\"1272061\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnimg.2023.1272061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2023.1272061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简介:经颅聚焦超声治疗(tcFUS)提供精确的热消融治疗帕金森病和特发性震颤。然而,精确治疗计划所需的纤维跟踪和分割的手动微调是耗时的,并且需要复杂神经成像工具的专业知识。这就提出了一个问题,即全自动管道是否可行,或者人工干预是否仍然是必要的。方法:我们研究纤维束造影算法、分割方法和自动化程度对特发性震颤治疗计划的依赖性。为此,我们将自动管道与手动方法进行比较,手动方法需要手动定义目标点,并基于FMRIB软件库(FSL)和其他开源工具。结果:我们的研究结果证明了自动纤维跟踪和自动确定标准治疗坐标的高度可行性。采用自动纤维跟踪方法和深度学习(DL)支持的标准坐标计算,我们获得了与手动执行基于fsl的管道相当的解剖学意义的结果。个别情况可能仍然表现出变化,通常源于兴趣区域(ROI)分割的差异。值得注意的是,基于dl的方法在产生准确的分割方面优于基于注册的方法。精确的ROI分割被证明是至关重要的,超过了微调参数或选择算法的重要性。正确的丘脑和红核分割对保证路径计算的准确性起着至关重要的作用。结论:本研究强调了tcFUS治疗中纤维跟踪算法自动化的潜力,但也承认在治疗计划中仍需要专家验证和整合解剖学专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic planning of MR-guided transcranial focused ultrasound treatment for essential tremor.

Introduction: Transcranial focused ultrasound therapy (tcFUS) offers precise thermal ablation for treating Parkinson's disease and essential tremor. However, the manual fine-tuning of fiber tracking and segmentation required for accurate treatment planning is time-consuming and demands expert knowledge of complex neuroimaging tools. This raises the question of whether a fully automated pipeline is feasible or if manual intervention remains necessary.

Methods: We investigate the dependence on fiber tractography algorithms, segmentation approaches, and degrees of automation, specifically for essential tremor therapy planning. For that purpose, we compare an automatic pipeline with a manual approach that requires the manual definition of the target point and is based on FMRIB software library (FSL) and other open-source tools.

Results: Our findings demonstrate the high feasibility of automatic fiber tracking and the automated determination of standard treatment coordinates. Employing an automatic fiber tracking approach and deep learning (DL)-supported standard coordinate calculation, we achieve anatomically meaningful results comparable to a manually performed FSL-based pipeline. Individual cases may still exhibit variations, often stemming from differences in region of interest (ROI) segmentation. Notably, the DL-based approach outperforms registration-based methods in producing accurate segmentations. Precise ROI segmentation proves crucial, surpassing the importance of fine-tuning parameters or selecting algorithms. Correct thalamus and red nucleus segmentation play vital roles in ensuring accurate pathway computation.

Conclusion: This study highlights the potential for automation in fiber tracking algorithms for tcFUS therapy, but acknowledges the ongoing need for expert verification and integration of anatomical expertise in treatment planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neurological complications of left atrial myxoma: a case report on stroke with left atrial myxoma and postoperative brain metastasis and cerebral aneurysm. Resting-state fMRI seizure onset localization meta-analysis: comparing rs-fMRI to other modalities including surgical outcomes. Mediterranean diet and brain functional connectivity in a population without dementia. Inferring neurocognition using artificial intelligence on brain MRIs. Adolescent brain maturation associated with environmental factors: a multivariate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1