玻璃粉基生态混凝土板的热力学分析:局限性与性能评价

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Periodica Polytechnica-Civil Engineering Pub Date : 2023-07-31 DOI:10.3311/ppci.22781
Abdelmoutalib Benfrid, Abdeldjalil Benbakhti, Zouaoui R. Harrat, Mohammed Chatbi, B. Krour, M. B. Bouiadjra
{"title":"玻璃粉基生态混凝土板的热力学分析:局限性与性能评价","authors":"Abdelmoutalib Benfrid, Abdeldjalil Benbakhti, Zouaoui R. Harrat, Mohammed Chatbi, B. Krour, M. B. Bouiadjra","doi":"10.3311/ppci.22781","DOIUrl":null,"url":null,"abstract":"This article presents a comprehensive investigation into the thermomechanical analysis of glass powder as an additive in concrete. The efficient Eshelby's model is utilized to determine the relevant composite properties, considering the spherical shape of the glass powder. A higher-order shear deformation plate theory is employed to theoretically simulate the reinforced concrete panel, ensuring accuracy and simplicity. Equilibrium equations are derived using the virtual work concept, and energy equations are derived using Hamilton's principle. Navier's analytical techniques are applied to obtain closed-form solutions for simply supported plates. A comprehensive parametric study is conducted, analyzing the impact of factors such as glass powder volume, geometric parameters, and thermal loading on the thermomechanical behavior of the panel. The findings highlight the challenges associated with using glass powder in concrete for thermomechanical applications and suggest the need for alternative approaches to optimize its effectiveness in such scenarios, also the study provides first-time numerical results that serve as guidelines for further research on reinforced concrete.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermomechanical Analysis of Glass Powder Based Eco-concrete Panels: Limitations and Performance Evaluation\",\"authors\":\"Abdelmoutalib Benfrid, Abdeldjalil Benbakhti, Zouaoui R. Harrat, Mohammed Chatbi, B. Krour, M. B. Bouiadjra\",\"doi\":\"10.3311/ppci.22781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a comprehensive investigation into the thermomechanical analysis of glass powder as an additive in concrete. The efficient Eshelby's model is utilized to determine the relevant composite properties, considering the spherical shape of the glass powder. A higher-order shear deformation plate theory is employed to theoretically simulate the reinforced concrete panel, ensuring accuracy and simplicity. Equilibrium equations are derived using the virtual work concept, and energy equations are derived using Hamilton's principle. Navier's analytical techniques are applied to obtain closed-form solutions for simply supported plates. A comprehensive parametric study is conducted, analyzing the impact of factors such as glass powder volume, geometric parameters, and thermal loading on the thermomechanical behavior of the panel. The findings highlight the challenges associated with using glass powder in concrete for thermomechanical applications and suggest the need for alternative approaches to optimize its effectiveness in such scenarios, also the study provides first-time numerical results that serve as guidelines for further research on reinforced concrete.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22781\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22781","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文对玻璃粉作为混凝土添加剂的热力学分析进行了全面的研究。考虑到玻粉的球形,利用高效Eshelby模型确定了相应的复合材料性能。采用高阶剪切变形板理论对钢筋混凝土面板进行理论模拟,保证了计算的准确性和简便性。利用虚功概念推导了平衡方程,利用哈密顿原理推导了能量方程。应用纳维耶的分析技术得到了简支板的闭型解。进行了全面的参数化研究,分析了玻璃粉体积、几何参数、热载荷等因素对面板热力学性能的影响。研究结果强调了在混凝土中使用玻璃粉进行热机械应用的挑战,并建议需要替代方法来优化其在这种情况下的有效性,同时该研究首次提供了数值结果,作为进一步研究钢筋混凝土的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermomechanical Analysis of Glass Powder Based Eco-concrete Panels: Limitations and Performance Evaluation
This article presents a comprehensive investigation into the thermomechanical analysis of glass powder as an additive in concrete. The efficient Eshelby's model is utilized to determine the relevant composite properties, considering the spherical shape of the glass powder. A higher-order shear deformation plate theory is employed to theoretically simulate the reinforced concrete panel, ensuring accuracy and simplicity. Equilibrium equations are derived using the virtual work concept, and energy equations are derived using Hamilton's principle. Navier's analytical techniques are applied to obtain closed-form solutions for simply supported plates. A comprehensive parametric study is conducted, analyzing the impact of factors such as glass powder volume, geometric parameters, and thermal loading on the thermomechanical behavior of the panel. The findings highlight the challenges associated with using glass powder in concrete for thermomechanical applications and suggest the need for alternative approaches to optimize its effectiveness in such scenarios, also the study provides first-time numerical results that serve as guidelines for further research on reinforced concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica Polytechnica-Civil Engineering
Periodica Polytechnica-Civil Engineering 工程技术-工程:土木
CiteScore
3.40
自引率
16.70%
发文量
89
审稿时长
12 months
期刊介绍: Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly. Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering. The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.
期刊最新文献
Investigation of the Feasibility of Increasing the Tail-grouting Zone during Mechanized Tunneling in Sandy Soils A New Optimal Sensor Location Method for Double-curvature Arch Dams: A Comparison with the Modal Assurance Criterion (MAC) Experimental Study on Direct Shear Strength of Fiber Reinforced Self Compacting Concrete under Acid and Sulfate Attack Numerical Investigation of Cyclic Behavior of Angled U-shaped Yielding Damper on Steel Frames Overview of the Empirical Relations between Different Aggregate Degradation Values and Rock Strength Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1