M. Perne, J. Kocijan, M. Božnar, B. Grašič, P. Mlakar
{"title":"复杂地形空气污染扩散的混合风预报","authors":"M. Perne, J. Kocijan, M. Božnar, B. Grašič, P. Mlakar","doi":"10.3808/jei.202300489","DOIUrl":null,"url":null,"abstract":"In case of an unplanned emission event from a nuclear power plant, the local population can be protected more efficiently when valid atmospheric dispersion model results are available. Atmospheric dispersion models use local meteorological variables as inputs. When atmospheric dispersion in the future is being predicted, a forecast of the local meteorological variables is needed. The most important variable in atmospheric dispersion modelling is wind, and accurately predicting ground level winds presents a challenge to numerical weather prediction models. We therefore develop hybrid models for forecasting local ground level wind at a single location where the terrain is complex and the average wind is weak and fluctuating. Wind speed and direction are modelled as west-east and south-north wind components. Each model is composed of a numerical weather prediction model and a Gaussian process statistical model that uses numerical weather predictions as some of its inputs and is trained on historical data to predict the output component. The most advanced Gaussian process models studied are of Gaussian process nonlinear autoregressive model with exogenous input (GPNARX) type. In addition to numerical weather predictions, they also use local meteorological variables, including the output variable, as their inputs. Numerical weather prediction results based on large scale information and fundamental knowledge of the system are thus supplemented by local measurements that better reflect the effects of local topography and land use. The models are tested by prediction and simulation. The wind components predicted by more advanced models are more accurate than raw or post-processed numerical weather prediction results. As an example, a model predicting 2D wind vector 1.5 h in advance achieves a NRMSE of 0.214 if it uses all the immediately available information. This is better than both the persistence model with NRMSE of 0.188 and post-processed NWP with NRMSE of 0.164. This demonstrates that hybrid modelling provides the best weather information for short-term and medium-term atmospheric dispersion forecasting. While the method is motivated by nuclear emission sources, it could also be applied to other pollution.","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":"25 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Forecasting of Wind for Air Pollution Dispersion over Complex Terrain\",\"authors\":\"M. Perne, J. Kocijan, M. Božnar, B. Grašič, P. Mlakar\",\"doi\":\"10.3808/jei.202300489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In case of an unplanned emission event from a nuclear power plant, the local population can be protected more efficiently when valid atmospheric dispersion model results are available. Atmospheric dispersion models use local meteorological variables as inputs. When atmospheric dispersion in the future is being predicted, a forecast of the local meteorological variables is needed. The most important variable in atmospheric dispersion modelling is wind, and accurately predicting ground level winds presents a challenge to numerical weather prediction models. We therefore develop hybrid models for forecasting local ground level wind at a single location where the terrain is complex and the average wind is weak and fluctuating. Wind speed and direction are modelled as west-east and south-north wind components. Each model is composed of a numerical weather prediction model and a Gaussian process statistical model that uses numerical weather predictions as some of its inputs and is trained on historical data to predict the output component. The most advanced Gaussian process models studied are of Gaussian process nonlinear autoregressive model with exogenous input (GPNARX) type. In addition to numerical weather predictions, they also use local meteorological variables, including the output variable, as their inputs. Numerical weather prediction results based on large scale information and fundamental knowledge of the system are thus supplemented by local measurements that better reflect the effects of local topography and land use. The models are tested by prediction and simulation. The wind components predicted by more advanced models are more accurate than raw or post-processed numerical weather prediction results. As an example, a model predicting 2D wind vector 1.5 h in advance achieves a NRMSE of 0.214 if it uses all the immediately available information. This is better than both the persistence model with NRMSE of 0.188 and post-processed NWP with NRMSE of 0.164. This demonstrates that hybrid modelling provides the best weather information for short-term and medium-term atmospheric dispersion forecasting. While the method is motivated by nuclear emission sources, it could also be applied to other pollution.\",\"PeriodicalId\":54840,\"journal\":{\"name\":\"Journal of Environmental Informatics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3808/jei.202300489\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202300489","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hybrid Forecasting of Wind for Air Pollution Dispersion over Complex Terrain
In case of an unplanned emission event from a nuclear power plant, the local population can be protected more efficiently when valid atmospheric dispersion model results are available. Atmospheric dispersion models use local meteorological variables as inputs. When atmospheric dispersion in the future is being predicted, a forecast of the local meteorological variables is needed. The most important variable in atmospheric dispersion modelling is wind, and accurately predicting ground level winds presents a challenge to numerical weather prediction models. We therefore develop hybrid models for forecasting local ground level wind at a single location where the terrain is complex and the average wind is weak and fluctuating. Wind speed and direction are modelled as west-east and south-north wind components. Each model is composed of a numerical weather prediction model and a Gaussian process statistical model that uses numerical weather predictions as some of its inputs and is trained on historical data to predict the output component. The most advanced Gaussian process models studied are of Gaussian process nonlinear autoregressive model with exogenous input (GPNARX) type. In addition to numerical weather predictions, they also use local meteorological variables, including the output variable, as their inputs. Numerical weather prediction results based on large scale information and fundamental knowledge of the system are thus supplemented by local measurements that better reflect the effects of local topography and land use. The models are tested by prediction and simulation. The wind components predicted by more advanced models are more accurate than raw or post-processed numerical weather prediction results. As an example, a model predicting 2D wind vector 1.5 h in advance achieves a NRMSE of 0.214 if it uses all the immediately available information. This is better than both the persistence model with NRMSE of 0.188 and post-processed NWP with NRMSE of 0.164. This demonstrates that hybrid modelling provides the best weather information for short-term and medium-term atmospheric dispersion forecasting. While the method is motivated by nuclear emission sources, it could also be applied to other pollution.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.