小体积混凝土路面设计中AASHTO M-E多基因遗传规划的扩展

Haoran Li, Lev Khazanovich
{"title":"小体积混凝土路面设计中AASHTO M-E多基因遗传规划的扩展","authors":"Haoran Li,&nbsp;Lev Khazanovich","doi":"10.1016/j.jreng.2022.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement Design Guide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavements compared to conventional design guidelines. It is achieved through optimizing pavement structural and thickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizing economic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volume concrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative. This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 ​mm (6 in.). This paper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concrete pavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performance analyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. This permits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axle spectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigid pavements with conventional concrete slab thicknesses and enable rational extrapolation of performance prediction for thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable low-volume pavement design using optimized ME solutions for Pittsburgh, PA, conditions.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049822000464/pdfft?md5=984763cc4d6718af2e4bc85b30daa988&pid=1-s2.0-S2097049822000464-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Multi-gene genetic programming extension of AASHTO M-E for design of low-volume concrete pavements\",\"authors\":\"Haoran Li,&nbsp;Lev Khazanovich\",\"doi\":\"10.1016/j.jreng.2022.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement Design Guide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavements compared to conventional design guidelines. It is achieved through optimizing pavement structural and thickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizing economic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volume concrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative. This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 ​mm (6 in.). This paper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concrete pavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performance analyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. This permits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axle spectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigid pavements with conventional concrete slab thicknesses and enable rational extrapolation of performance prediction for thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable low-volume pavement design using optimized ME solutions for Pittsburgh, PA, conditions.</p></div>\",\"PeriodicalId\":100830,\"journal\":{\"name\":\"Journal of Road Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2097049822000464/pdfft?md5=984763cc4d6718af2e4bc85b30daa988&pid=1-s2.0-S2097049822000464-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Road Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2097049822000464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Road Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097049822000464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与传统设计指南相比,美国国家公路和交通官员协会的机械经验路面设计指南(AASHTO M-E)为设计更经济、可持续的大容量刚性路面提供了机会。它是通过在特定气候和交通条件下使用先进的M-E原则优化路面结构和厚度设计来实现的,从而最大限度地降低经济成本和环境影响。然而,使用AASHTOWare Pavement ME design (Pavement ME)软件对小体积混凝土路面实施AASHTO M-E设计往往过于保守。这是因为Pavement ME规定混凝土板的最小设计厚度为152.4毫米(6英寸)。本文介绍了AASHTO M-E框架在不修改路面ME的情况下设计小体积接缝素混凝土路面(jpps)的新扩展。利用基于多基因遗传规划(MGGP)的计算模型,快速求解JPCP损伤累积和长期性能分析。所建立的MGGP模型模拟了疲劳损伤和能量累积的差异。这允许横向裂缝和接头断裂的预测为广泛的设计输入参数和轴谱。所开发的基于mggp的模型将刚性路面的路面me预测裂缝和断层与常规混凝土板厚度相匹配,并能够合理地推断较薄的jpcp的性能预测。本文演示了开发的计算模型如何使用优化的ME解决方案,为宾夕法尼亚州匹兹堡的条件实现可持续的小体积路面设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-gene genetic programming extension of AASHTO M-E for design of low-volume concrete pavements

The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement Design Guide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavements compared to conventional design guidelines. It is achieved through optimizing pavement structural and thickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizing economic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volume concrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative. This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 ​mm (6 in.). This paper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concrete pavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performance analyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. This permits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axle spectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigid pavements with conventional concrete slab thicknesses and enable rational extrapolation of performance prediction for thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable low-volume pavement design using optimized ME solutions for Pittsburgh, PA, conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
期刊最新文献
Bio-based rejuvenators in asphalt pavements: A comprehensive review and analytical study Towards green asphalt materials with lower emission of volatile organic compounds: A review on the release characteristics and its emission reduction additives Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char: A statistical neural network approach A review of the development of asphalt foaming technology Condition indices for rigid pavements: A comparative analysis of state DOTs using Michigan PMS data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1