{"title":"量子态干涉与量子力学概率表示中的叠加原理","authors":"M. Man'ko, V. Man'ko","doi":"10.1142/s1230161219500161","DOIUrl":null,"url":null,"abstract":"The superposition of pure quantum states explicitly expressed in terms of a nonlinear addition rule of state density operators is reviewed. The probability representation of density matrices of qudit states is used to formulate the interference of the states as a combination of the probability distributions describing pure states. The formalism of quantizer–dequantizer operators is developed. Examples of spin-1/2 states and f-oscillator systems are considered.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"3 1","pages":"1950016:1-1950016:13"},"PeriodicalIF":1.3000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interference of Quantum States and Superposition Principle in Probability Representation of Quantum Mechanics\",\"authors\":\"M. Man'ko, V. Man'ko\",\"doi\":\"10.1142/s1230161219500161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The superposition of pure quantum states explicitly expressed in terms of a nonlinear addition rule of state density operators is reviewed. The probability representation of density matrices of qudit states is used to formulate the interference of the states as a combination of the probability distributions describing pure states. The formalism of quantizer–dequantizer operators is developed. Examples of spin-1/2 states and f-oscillator systems are considered.\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"3 1\",\"pages\":\"1950016:1-1950016:13\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s1230161219500161\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161219500161","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Interference of Quantum States and Superposition Principle in Probability Representation of Quantum Mechanics
The superposition of pure quantum states explicitly expressed in terms of a nonlinear addition rule of state density operators is reviewed. The probability representation of density matrices of qudit states is used to formulate the interference of the states as a combination of the probability distributions describing pure states. The formalism of quantizer–dequantizer operators is developed. Examples of spin-1/2 states and f-oscillator systems are considered.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.