基于可靠性感知分区管的饮水管网模型预测控制

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Applied Mathematics and Computer Science Pub Date : 2022-06-01 DOI:10.34768/amcs-2022-0015
Khoury Boutrous, F. Nejjari, V. Puig
{"title":"基于可靠性感知分区管的饮水管网模型预测控制","authors":"Khoury Boutrous, F. Nejjari, V. Puig","doi":"10.34768/amcs-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract A robust economic model predictive control approach that takes into account the reliability of actuators in a network is presented for the control of a drinking water network in the presence of uncertainties in the forecasted demands required for the predictive control design. The uncertain forecasted demand on the nominal MPC may make the optimization process intractable or, to a lesser extent, degrade the controller performance. Thus, the uncertainty on demand is taken into account and considered unknown but bounded in a zonotopic set. Based on this uncertainty description, a robust MPC is formulated to ensure robust constraint satisfaction, performance, stability as well as recursive feasibility through the formulation of an online tube-based MPC and an accompanying appropriate terminal set. Reliability is then modelled based on Bayesian networks, such that the resulting nonlinear function accommodated in the optimization setup is presented in a pseudo-linear form by means of a linear parameter varying representation, mitigating any additional computational expense thanks to the formulation as a quadratic optimization problem. With the inclusion of a reliability index to the economic dominant cost of the MPC, the network users’ requirements are met whilst ensuring improved reliability, therefore decreasing short and long term operational costs for water utility operators. Capabilities of the designed controller are demonstrated with simulated scenarios on the Barcelona drinking water network.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"9 1","pages":"197 - 211"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliability–Aware Zonotopic Tube–Based Model Predictive Control of a Drinking Water Network\",\"authors\":\"Khoury Boutrous, F. Nejjari, V. Puig\",\"doi\":\"10.34768/amcs-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A robust economic model predictive control approach that takes into account the reliability of actuators in a network is presented for the control of a drinking water network in the presence of uncertainties in the forecasted demands required for the predictive control design. The uncertain forecasted demand on the nominal MPC may make the optimization process intractable or, to a lesser extent, degrade the controller performance. Thus, the uncertainty on demand is taken into account and considered unknown but bounded in a zonotopic set. Based on this uncertainty description, a robust MPC is formulated to ensure robust constraint satisfaction, performance, stability as well as recursive feasibility through the formulation of an online tube-based MPC and an accompanying appropriate terminal set. Reliability is then modelled based on Bayesian networks, such that the resulting nonlinear function accommodated in the optimization setup is presented in a pseudo-linear form by means of a linear parameter varying representation, mitigating any additional computational expense thanks to the formulation as a quadratic optimization problem. With the inclusion of a reliability index to the economic dominant cost of the MPC, the network users’ requirements are met whilst ensuring improved reliability, therefore decreasing short and long term operational costs for water utility operators. Capabilities of the designed controller are demonstrated with simulated scenarios on the Barcelona drinking water network.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"9 1\",\"pages\":\"197 - 211\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0015\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

摘要针对预测控制设计中存在不确定性预测需求的饮用水管网控制问题,提出了一种考虑网络中执行机构可靠性的鲁棒经济模型预测控制方法。对标称MPC的不确定预测需求可能会使优化过程变得难以处理,或者在较小程度上降低控制器的性能。因此,考虑了需求的不确定性,并认为在分区集中是未知的但有界的。在此不确定性描述的基础上,通过制定在线管材MPC和相应的终端集,制定了鲁棒MPC,以保证鲁棒约束满足、性能、稳定性和递归可行性。然后基于贝叶斯网络对可靠性进行建模,这样,在优化设置中容纳的非线性函数通过线性参数变化表示以伪线性形式呈现,由于将公式作为二次优化问题而减轻了任何额外的计算费用。通过将可靠性指标纳入MPC的经济主导成本,在确保提高可靠性的同时满足了网络用户的要求,从而降低了水务公司运营商的短期和长期运营成本。设计的控制器的功能通过巴塞罗那饮用水网络的模拟场景进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability–Aware Zonotopic Tube–Based Model Predictive Control of a Drinking Water Network
Abstract A robust economic model predictive control approach that takes into account the reliability of actuators in a network is presented for the control of a drinking water network in the presence of uncertainties in the forecasted demands required for the predictive control design. The uncertain forecasted demand on the nominal MPC may make the optimization process intractable or, to a lesser extent, degrade the controller performance. Thus, the uncertainty on demand is taken into account and considered unknown but bounded in a zonotopic set. Based on this uncertainty description, a robust MPC is formulated to ensure robust constraint satisfaction, performance, stability as well as recursive feasibility through the formulation of an online tube-based MPC and an accompanying appropriate terminal set. Reliability is then modelled based on Bayesian networks, such that the resulting nonlinear function accommodated in the optimization setup is presented in a pseudo-linear form by means of a linear parameter varying representation, mitigating any additional computational expense thanks to the formulation as a quadratic optimization problem. With the inclusion of a reliability index to the economic dominant cost of the MPC, the network users’ requirements are met whilst ensuring improved reliability, therefore decreasing short and long term operational costs for water utility operators. Capabilities of the designed controller are demonstrated with simulated scenarios on the Barcelona drinking water network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
期刊最新文献
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances Choice of the p-norm for High Level Classification Features Pruning in Modern Convolutional Neural Networks With Local Sensitivity Analysis Travelling Waves for Low–Grade Glioma Growth and Response to A Chemotherapy Model Asts: Autonomous Switching of Task–Level Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1