{"title":"并五苯在a-SiO2上分子取向转变的分子动力学模拟","authors":"Yuanqi Zeng, B. Tao, Z. Yin","doi":"10.1109/NEMS.2014.6908773","DOIUrl":null,"url":null,"abstract":"The molecular orientation has a great impact on the performance of organic thin film transistors (OTFTs) and undesired orientation also appears. There is a critical size nc of the orientation transformation from lateral to normal for pentacene (5A) on the a-SiO2 surface during the vapor-phase deposition process. Molecular dynamics (MD) simulations are performed to get the critical size and gain insight into the transformation mechanism. The results suggest that the delicate interplay between the interaction of molecule-molecule and the interaction of molecule-substrate appears to govern the growth and morphology of pentacene. When n<;nc, the 5A molecules prefer to form lateral oriented cluster with (1-10) surface parallel to the substrate driven by the interaction of molecule-substrate. For n>nc the normal orientation with (001) surface parallel to the substrate becomes stable because the interaction of molecule-molecule holds the dominant position. And a competitive factor Δ between the interaction of molecule-molecule and the interaction of molecule-substrate is established to characterize the results.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"43 1","pages":"121-125"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics simulation of molecular orientation transformation of pentacene on a-SiO2\",\"authors\":\"Yuanqi Zeng, B. Tao, Z. Yin\",\"doi\":\"10.1109/NEMS.2014.6908773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The molecular orientation has a great impact on the performance of organic thin film transistors (OTFTs) and undesired orientation also appears. There is a critical size nc of the orientation transformation from lateral to normal for pentacene (5A) on the a-SiO2 surface during the vapor-phase deposition process. Molecular dynamics (MD) simulations are performed to get the critical size and gain insight into the transformation mechanism. The results suggest that the delicate interplay between the interaction of molecule-molecule and the interaction of molecule-substrate appears to govern the growth and morphology of pentacene. When n<;nc, the 5A molecules prefer to form lateral oriented cluster with (1-10) surface parallel to the substrate driven by the interaction of molecule-substrate. For n>nc the normal orientation with (001) surface parallel to the substrate becomes stable because the interaction of molecule-molecule holds the dominant position. And a competitive factor Δ between the interaction of molecule-molecule and the interaction of molecule-substrate is established to characterize the results.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"43 1\",\"pages\":\"121-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular dynamics simulation of molecular orientation transformation of pentacene on a-SiO2
The molecular orientation has a great impact on the performance of organic thin film transistors (OTFTs) and undesired orientation also appears. There is a critical size nc of the orientation transformation from lateral to normal for pentacene (5A) on the a-SiO2 surface during the vapor-phase deposition process. Molecular dynamics (MD) simulations are performed to get the critical size and gain insight into the transformation mechanism. The results suggest that the delicate interplay between the interaction of molecule-molecule and the interaction of molecule-substrate appears to govern the growth and morphology of pentacene. When n<;nc, the 5A molecules prefer to form lateral oriented cluster with (1-10) surface parallel to the substrate driven by the interaction of molecule-substrate. For n>nc the normal orientation with (001) surface parallel to the substrate becomes stable because the interaction of molecule-molecule holds the dominant position. And a competitive factor Δ between the interaction of molecule-molecule and the interaction of molecule-substrate is established to characterize the results.