基于生态方法的多任务行动生成模型

M. Gouko, Koji Ito
{"title":"基于生态方法的多任务行动生成模型","authors":"M. Gouko, Koji Ito","doi":"10.1109/SASO.2008.29","DOIUrl":null,"url":null,"abstract":"We propose the a self-organized learning model for generating robot actions. It is based on the ecological approach proposed by J. J. Gibson, which is attractive for robot systems from the technical viewpoint. Our model enables a robot to perform multiple tasks. We applied it to a simulation of a mobile robot and confirmed its effectiveness.","PeriodicalId":6458,"journal":{"name":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"11 1","pages":"457-458"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Action Generation Model for Multiple Tasks Based on the Ecological Approach\",\"authors\":\"M. Gouko, Koji Ito\",\"doi\":\"10.1109/SASO.2008.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the a self-organized learning model for generating robot actions. It is based on the ecological approach proposed by J. J. Gibson, which is attractive for robot systems from the technical viewpoint. Our model enables a robot to perform multiple tasks. We applied it to a simulation of a mobile robot and confirmed its effectiveness.\",\"PeriodicalId\":6458,\"journal\":{\"name\":\"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"volume\":\"11 1\",\"pages\":\"457-458\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2008.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2008.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于机器人动作生成的自组织学习模型。它基于J. J. Gibson提出的生态方法,从技术角度来看,这对机器人系统很有吸引力。我们的模型使机器人能够执行多种任务。我们将其应用于移动机器人的仿真,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Action Generation Model for Multiple Tasks Based on the Ecological Approach
We propose the a self-organized learning model for generating robot actions. It is based on the ecological approach proposed by J. J. Gibson, which is attractive for robot systems from the technical viewpoint. Our model enables a robot to perform multiple tasks. We applied it to a simulation of a mobile robot and confirmed its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prosumers as Aggregators in the DEZENT Context of Regenerative Power Production A Hybrid Cross-Entropy Cognitive-Based Algorithm for Resource Allocation in Cloud Environments Artificial Immune System Driven Evolution in Swarm Chemistry Towards an Agent-Based Simulation Model for Schema Matching A Graph Analysis Approach to Detect Attacks in Multi-agent Systems at Runtime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1