基于连续小波变换和二维卷积神经网络的滚珠丝杠故障诊断

Zhijie Xie, Di Yu, C. Zhan, Qiancheng Zhao, Junxiang Wang, Jiuqing Liu, Jiaxiu Liu
{"title":"基于连续小波变换和二维卷积神经网络的滚珠丝杠故障诊断","authors":"Zhijie Xie, Di Yu, C. Zhan, Qiancheng Zhao, Junxiang Wang, Jiuqing Liu, Jiaxiu Liu","doi":"10.1177/00202940221107620","DOIUrl":null,"url":null,"abstract":"Due to extreme operating conditions such as high-speed and heavy loads, ball screws are prone to damages, that affect the accuracy and operational safety of the mechanical equipment. As strong background noise and weak fault characteristics, it is difficult to capture the inherent fault state only depending on the time-domain or frequency-domain information from the vibration signal. In this paper, a fault diagnosis method for the ball screw based on continuous wavelet transform (CWT) and two-dimensional convolutional neural network (2DCNN) is proposed. The noise-reducing vibration signal is obtained via CWT. The time-frequency graph of the noise reduction signal can more comprehensively reflect the fault information of the ball screw. The time-frequency graph is used as the input to train and test the 2DCNN. Finally, diagnosis results of different types of faults reveal that the proposed CWT-2DCNN fault diagnosis method can achieve an average recognition rate of 99.67%. Compared with one-dimensional convolutional neural network (1DCNN) and traditional BP neural network, the proposed method has fast network convergence and high recognition accuracy. Time-frequency graphs of the noise-reduced signal used as fault features for classification can effectively avoid the problem of uncertainty due to the manual extraction of features. The proposed method has high application potential in the field of ball screw pair fault diagnosis.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"21 1","pages":"518 - 528"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ball screw fault diagnosis based on continuous wavelet transform and two-dimensional convolution neural network\",\"authors\":\"Zhijie Xie, Di Yu, C. Zhan, Qiancheng Zhao, Junxiang Wang, Jiuqing Liu, Jiaxiu Liu\",\"doi\":\"10.1177/00202940221107620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to extreme operating conditions such as high-speed and heavy loads, ball screws are prone to damages, that affect the accuracy and operational safety of the mechanical equipment. As strong background noise and weak fault characteristics, it is difficult to capture the inherent fault state only depending on the time-domain or frequency-domain information from the vibration signal. In this paper, a fault diagnosis method for the ball screw based on continuous wavelet transform (CWT) and two-dimensional convolutional neural network (2DCNN) is proposed. The noise-reducing vibration signal is obtained via CWT. The time-frequency graph of the noise reduction signal can more comprehensively reflect the fault information of the ball screw. The time-frequency graph is used as the input to train and test the 2DCNN. Finally, diagnosis results of different types of faults reveal that the proposed CWT-2DCNN fault diagnosis method can achieve an average recognition rate of 99.67%. Compared with one-dimensional convolutional neural network (1DCNN) and traditional BP neural network, the proposed method has fast network convergence and high recognition accuracy. Time-frequency graphs of the noise-reduced signal used as fault features for classification can effectively avoid the problem of uncertainty due to the manual extraction of features. The proposed method has high application potential in the field of ball screw pair fault diagnosis.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"21 1\",\"pages\":\"518 - 528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940221107620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940221107620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在高速、重载等极端工况下,滚珠丝杠容易发生损坏,影响机械设备的精度和运行安全。由于背景噪声强,故障特征弱,仅依靠振动信号的时域或频域信息很难捕捉到固有故障状态。提出了一种基于连续小波变换(CWT)和二维卷积神经网络(2DCNN)的滚珠丝杠故障诊断方法。通过CWT获取降噪振动信号。降噪信号的时频图能更全面地反映滚珠丝杠的故障信息。将时频图作为输入,对2DCNN进行训练和测试。最后,对不同类型故障的诊断结果表明,所提出的CWT-2DCNN故障诊断方法平均识别率可达99.67%。与一维卷积神经网络(1DCNN)和传统BP神经网络相比,该方法具有较快的网络收敛速度和较高的识别精度。将降噪信号的时频图作为故障特征进行分类,可以有效避免人工提取特征带来的不确定性问题。该方法在滚珠丝杠副故障诊断领域具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ball screw fault diagnosis based on continuous wavelet transform and two-dimensional convolution neural network
Due to extreme operating conditions such as high-speed and heavy loads, ball screws are prone to damages, that affect the accuracy and operational safety of the mechanical equipment. As strong background noise and weak fault characteristics, it is difficult to capture the inherent fault state only depending on the time-domain or frequency-domain information from the vibration signal. In this paper, a fault diagnosis method for the ball screw based on continuous wavelet transform (CWT) and two-dimensional convolutional neural network (2DCNN) is proposed. The noise-reducing vibration signal is obtained via CWT. The time-frequency graph of the noise reduction signal can more comprehensively reflect the fault information of the ball screw. The time-frequency graph is used as the input to train and test the 2DCNN. Finally, diagnosis results of different types of faults reveal that the proposed CWT-2DCNN fault diagnosis method can achieve an average recognition rate of 99.67%. Compared with one-dimensional convolutional neural network (1DCNN) and traditional BP neural network, the proposed method has fast network convergence and high recognition accuracy. Time-frequency graphs of the noise-reduced signal used as fault features for classification can effectively avoid the problem of uncertainty due to the manual extraction of features. The proposed method has high application potential in the field of ball screw pair fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1