南非极端降雨的时空依赖模型:贝叶斯集成嵌套拉普拉斯近似技术

T. A. Diriba, L. K. Debusho
{"title":"南非极端降雨的时空依赖模型:贝叶斯集成嵌套拉普拉斯近似技术","authors":"T. A. Diriba, L. K. Debusho","doi":"10.1080/23737484.2023.2207503","DOIUrl":null,"url":null,"abstract":"Abstract The spatial and spatio-temporal dependence modeling to extreme value distributions have been used to analyze the extremes of daily maximum rainfall data across selected weather stations in South Africa combining generalized Pareto distribution (GPD) with the flexible Bayesian Latent Gaussian Model (LGM). The paper demonstrated the spatio-temporal GPD model for applications in extreme rainfall data that capture systematic variation through spatial and spatio-temporal modeling framework, in which the temporal constitutes the week and month as random separately. The paper uses the Bayesian integrated Nested Laplace approximation (INLA) algorithm to estimate marginal posterior means of the parameters and hyper-parameters for Bayesian spatio-temporal models. The Bayesian inferences using INLA technique were applied to obtain prediction of the return levels at each station, which incorporate uncertainty due to model estimation, as well as the randomness that is inherent in the processes.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"5 1","pages":"152 - 180"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal dependence modelling of extreme rainfall in South Africa: A Bayesian integrated nested Laplace approximation technique\",\"authors\":\"T. A. Diriba, L. K. Debusho\",\"doi\":\"10.1080/23737484.2023.2207503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The spatial and spatio-temporal dependence modeling to extreme value distributions have been used to analyze the extremes of daily maximum rainfall data across selected weather stations in South Africa combining generalized Pareto distribution (GPD) with the flexible Bayesian Latent Gaussian Model (LGM). The paper demonstrated the spatio-temporal GPD model for applications in extreme rainfall data that capture systematic variation through spatial and spatio-temporal modeling framework, in which the temporal constitutes the week and month as random separately. The paper uses the Bayesian integrated Nested Laplace approximation (INLA) algorithm to estimate marginal posterior means of the parameters and hyper-parameters for Bayesian spatio-temporal models. The Bayesian inferences using INLA technique were applied to obtain prediction of the return levels at each station, which incorporate uncertainty due to model estimation, as well as the randomness that is inherent in the processes.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"5 1\",\"pages\":\"152 - 180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2023.2207503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2023.2207503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要结合广义帕累托分布(GPD)和灵活贝叶斯隐高斯模型(LGM),利用极值分布的时空依赖模型对南非部分气象站的日最大降雨量极值进行了分析。本文通过时空建模框架,以周、月为随机时间,建立了时空GPD模型,该模型可以捕捉极端降雨数据的系统变化。本文采用贝叶斯积分嵌套拉普拉斯近似(INLA)算法估计贝叶斯时空模型参数和超参数的边际后验均值。使用INLA技术的贝叶斯推断被用于获得每个站点的返回水平的预测,其中包括由于模型估计而产生的不确定性,以及过程中固有的随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-temporal dependence modelling of extreme rainfall in South Africa: A Bayesian integrated nested Laplace approximation technique
Abstract The spatial and spatio-temporal dependence modeling to extreme value distributions have been used to analyze the extremes of daily maximum rainfall data across selected weather stations in South Africa combining generalized Pareto distribution (GPD) with the flexible Bayesian Latent Gaussian Model (LGM). The paper demonstrated the spatio-temporal GPD model for applications in extreme rainfall data that capture systematic variation through spatial and spatio-temporal modeling framework, in which the temporal constitutes the week and month as random separately. The paper uses the Bayesian integrated Nested Laplace approximation (INLA) algorithm to estimate marginal posterior means of the parameters and hyper-parameters for Bayesian spatio-temporal models. The Bayesian inferences using INLA technique were applied to obtain prediction of the return levels at each station, which incorporate uncertainty due to model estimation, as well as the randomness that is inherent in the processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1