调谐单碳纳米管的半导体特性用于制造纳米器件

H. Chan, N. Xi, Jiangbo Zhang, Guangyong Li
{"title":"调谐单碳纳米管的半导体特性用于制造纳米器件","authors":"H. Chan, N. Xi, Jiangbo Zhang, Guangyong Li","doi":"10.1109/NEMS.2006.334777","DOIUrl":null,"url":null,"abstract":"Carbon nanotube (CNT) is found to be an amazing material for nanoelectronics due to its unique properties. It provides the possibility of miniaturizing the traditional electronic elements. Recently, people have been focusing on exploring its applications on optoelectronics because CNT is a direct bandgap material and its bandgap is inversely related to its diameter. Thus, it is ease for photon adsorption or generation with different wavelengths. In this paper, we presented the modification of the diameter of a single multi-walled carbon nanotube (s-MWNT) by electrical breakdown of nanotube walls. Thus, the conduction mechanism of the single carbon nanotube (s-CNT) can change from conducting to semi-conducting. Also, the barrier height of the s-CNT based diode which is fabricated by using atomic force microscopy based nanomanipulation system, can be indirectly modified, which has the same effect from CNT doping. The breakdown of a MWNT was investigated using atomic force microscopy (AFM) and the diameter, changed from 60 nm to ~10 nm, was measured at each step of breakdowns. Using this modification technique, the s-CNT based diode can potentially be used in optoelectronics","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"2012 1","pages":"1410-1413"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tuning Semiconducting Properties of Single Carbon Nanotube for Fabrication of Nano Devices\",\"authors\":\"H. Chan, N. Xi, Jiangbo Zhang, Guangyong Li\",\"doi\":\"10.1109/NEMS.2006.334777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotube (CNT) is found to be an amazing material for nanoelectronics due to its unique properties. It provides the possibility of miniaturizing the traditional electronic elements. Recently, people have been focusing on exploring its applications on optoelectronics because CNT is a direct bandgap material and its bandgap is inversely related to its diameter. Thus, it is ease for photon adsorption or generation with different wavelengths. In this paper, we presented the modification of the diameter of a single multi-walled carbon nanotube (s-MWNT) by electrical breakdown of nanotube walls. Thus, the conduction mechanism of the single carbon nanotube (s-CNT) can change from conducting to semi-conducting. Also, the barrier height of the s-CNT based diode which is fabricated by using atomic force microscopy based nanomanipulation system, can be indirectly modified, which has the same effect from CNT doping. The breakdown of a MWNT was investigated using atomic force microscopy (AFM) and the diameter, changed from 60 nm to ~10 nm, was measured at each step of breakdowns. Using this modification technique, the s-CNT based diode can potentially be used in optoelectronics\",\"PeriodicalId\":6362,\"journal\":{\"name\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"2012 1\",\"pages\":\"1410-1413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2006.334777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

碳纳米管(CNT)以其独特的性能成为纳米电子学领域的一种重要材料。它提供了小型化传统电子元件的可能性。近年来,由于碳纳米管是一种直接带隙材料,其带隙与直径成反比,因此其在光电子领域的应用一直受到人们的关注。因此,它易于吸附或产生不同波长的光子。在本文中,我们提出了通过电击穿纳米管壁来改变单个多壁碳纳米管(s-MWNT)直径。因此,单碳纳米管(s-CNT)的导电机制可以从导电转变为半导体。此外,利用原子力显微镜纳米操作系统制备的s-CNT基二极管的势垒高度也可以间接改变,与掺杂碳纳米管具有相同的效果。利用原子力显微镜(AFM)研究了MWNT的击穿过程,并测量了每一步击穿时直径从60 nm到~10 nm的变化。利用这种修饰技术,基于s-碳纳米管的二极管可以潜在地用于光电子学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning Semiconducting Properties of Single Carbon Nanotube for Fabrication of Nano Devices
Carbon nanotube (CNT) is found to be an amazing material for nanoelectronics due to its unique properties. It provides the possibility of miniaturizing the traditional electronic elements. Recently, people have been focusing on exploring its applications on optoelectronics because CNT is a direct bandgap material and its bandgap is inversely related to its diameter. Thus, it is ease for photon adsorption or generation with different wavelengths. In this paper, we presented the modification of the diameter of a single multi-walled carbon nanotube (s-MWNT) by electrical breakdown of nanotube walls. Thus, the conduction mechanism of the single carbon nanotube (s-CNT) can change from conducting to semi-conducting. Also, the barrier height of the s-CNT based diode which is fabricated by using atomic force microscopy based nanomanipulation system, can be indirectly modified, which has the same effect from CNT doping. The breakdown of a MWNT was investigated using atomic force microscopy (AFM) and the diameter, changed from 60 nm to ~10 nm, was measured at each step of breakdowns. Using this modification technique, the s-CNT based diode can potentially be used in optoelectronics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Nano-Imprinting Lithography Based on Infrared Pulsed Laser Heating A RFID Tag Based Remote DNA sensing System Simultaneous Quantification for Hepatitis B Virus and Hepatitis C Virus Using Real-time PCR Lab-on-a-chip Self-Welded Metal-Catalyzed Carbon Nanotube Piezoresistors with Very Large Longitudinal Piezoresistivity of ~ 4×10-8 Pa-1 Fabrication and Test of MEMS/NEMS based Polyimide Integrated Humidity, Temperature and Pressure Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1