含错分类的结构方程模型参数估计:MC-SIMEX方法

Sahika Gokmen, J. Lyhagen
{"title":"含错分类的结构方程模型参数估计:MC-SIMEX方法","authors":"Sahika Gokmen, J. Lyhagen","doi":"10.1080/23737484.2022.2106324","DOIUrl":null,"url":null,"abstract":"Abstract The random errors in the measurement process, called measurement error or misclassification, are inevitable and cause bias and inconsistent parameter estimates. Misclassification Simulation Extrapolation (MC-SIMEX) is a simulation based measurement error estimation method to obtain reduced parameter bias under misclassification. The main purpose of this study is an adaptation of MC-SIMEX method on Structural Equation Modeling (SEM). The effects of misclassification on the parameter estimates of a binary explanatory variables in SEM and the performance of MC-SIMEX method investigated with both Monte Carlo and an empirical study. According to the main results, finding the best extrapolant function is just as important as estimating the misclassification matrix although MC-SIMEX corrected a part of the bias.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"1 1","pages":"545 - 558"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation of structural equation models with misclassification: The MC-SIMEX approach\",\"authors\":\"Sahika Gokmen, J. Lyhagen\",\"doi\":\"10.1080/23737484.2022.2106324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The random errors in the measurement process, called measurement error or misclassification, are inevitable and cause bias and inconsistent parameter estimates. Misclassification Simulation Extrapolation (MC-SIMEX) is a simulation based measurement error estimation method to obtain reduced parameter bias under misclassification. The main purpose of this study is an adaptation of MC-SIMEX method on Structural Equation Modeling (SEM). The effects of misclassification on the parameter estimates of a binary explanatory variables in SEM and the performance of MC-SIMEX method investigated with both Monte Carlo and an empirical study. According to the main results, finding the best extrapolant function is just as important as estimating the misclassification matrix although MC-SIMEX corrected a part of the bias.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"545 - 558\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2022.2106324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2022.2106324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

测量过程中的随机误差,即测量误差或误分类,是不可避免的,会导致误差和参数估计不一致。误分类仿真外推法(MC-SIMEX)是一种基于仿真的测量误差估计方法,用于在误分类情况下获得较小的参数偏差。本研究的主要目的是将MC-SIMEX方法应用于结构方程建模(SEM)。通过蒙特卡罗和实证研究,研究了错误分类对SEM中二元解释变量参数估计的影响以及MC-SIMEX方法的性能。根据主要结果,尽管MC-SIMEX修正了部分偏差,但寻找最佳外推函数与估计错误分类矩阵同样重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter estimation of structural equation models with misclassification: The MC-SIMEX approach
Abstract The random errors in the measurement process, called measurement error or misclassification, are inevitable and cause bias and inconsistent parameter estimates. Misclassification Simulation Extrapolation (MC-SIMEX) is a simulation based measurement error estimation method to obtain reduced parameter bias under misclassification. The main purpose of this study is an adaptation of MC-SIMEX method on Structural Equation Modeling (SEM). The effects of misclassification on the parameter estimates of a binary explanatory variables in SEM and the performance of MC-SIMEX method investigated with both Monte Carlo and an empirical study. According to the main results, finding the best extrapolant function is just as important as estimating the misclassification matrix although MC-SIMEX corrected a part of the bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1