{"title":"抗癌药物负载ZnO纳米粒子的光学带隙和晶体尺寸研究","authors":"Deepak Kumar, Samanwita Pal","doi":"10.1063/1.5122627","DOIUrl":null,"url":null,"abstract":"The present study aims at the development and characterization of zinc oxide (ZnO) nanoparticles as a carrier for various anti-cancerous drugs viz. 5-Fluorouracil (5-FU), Doxorubicin (DOX) and Daunorubicin (DNR). ZnO nanoparticles were prepared by standard precipitation method. The measurement of optical band gap using UV-Visible Diffuse Reflectance Spectroscopy (DRS) analysis reveals the lowering of ZnO band gap after the drug loading. Crystallite size of free and drug loaded ZnO nanoparticles were determined using X-ray Diffraction (XRD) analysis. The crystallite size of ZnO nanoparticles increases after the drug loading. Both the techniques confirm the adsorption of drug molecules on ZnO surface.The present study aims at the development and characterization of zinc oxide (ZnO) nanoparticles as a carrier for various anti-cancerous drugs viz. 5-Fluorouracil (5-FU), Doxorubicin (DOX) and Daunorubicin (DNR). ZnO nanoparticles were prepared by standard precipitation method. The measurement of optical band gap using UV-Visible Diffuse Reflectance Spectroscopy (DRS) analysis reveals the lowering of ZnO band gap after the drug loading. Crystallite size of free and drug loaded ZnO nanoparticles were determined using X-ray Diffraction (XRD) analysis. The crystallite size of ZnO nanoparticles increases after the drug loading. Both the techniques confirm the adsorption of drug molecules on ZnO surface.","PeriodicalId":7262,"journal":{"name":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical band gap and crystallite size investigations of anticancer drug loaded ZnO nanoparticles\",\"authors\":\"Deepak Kumar, Samanwita Pal\",\"doi\":\"10.1063/1.5122627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study aims at the development and characterization of zinc oxide (ZnO) nanoparticles as a carrier for various anti-cancerous drugs viz. 5-Fluorouracil (5-FU), Doxorubicin (DOX) and Daunorubicin (DNR). ZnO nanoparticles were prepared by standard precipitation method. The measurement of optical band gap using UV-Visible Diffuse Reflectance Spectroscopy (DRS) analysis reveals the lowering of ZnO band gap after the drug loading. Crystallite size of free and drug loaded ZnO nanoparticles were determined using X-ray Diffraction (XRD) analysis. The crystallite size of ZnO nanoparticles increases after the drug loading. Both the techniques confirm the adsorption of drug molecules on ZnO surface.The present study aims at the development and characterization of zinc oxide (ZnO) nanoparticles as a carrier for various anti-cancerous drugs viz. 5-Fluorouracil (5-FU), Doxorubicin (DOX) and Daunorubicin (DNR). ZnO nanoparticles were prepared by standard precipitation method. The measurement of optical band gap using UV-Visible Diffuse Reflectance Spectroscopy (DRS) analysis reveals the lowering of ZnO band gap after the drug loading. Crystallite size of free and drug loaded ZnO nanoparticles were determined using X-ray Diffraction (XRD) analysis. The crystallite size of ZnO nanoparticles increases after the drug loading. Both the techniques confirm the adsorption of drug molecules on ZnO surface.\",\"PeriodicalId\":7262,\"journal\":{\"name\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5122627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5122627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical band gap and crystallite size investigations of anticancer drug loaded ZnO nanoparticles
The present study aims at the development and characterization of zinc oxide (ZnO) nanoparticles as a carrier for various anti-cancerous drugs viz. 5-Fluorouracil (5-FU), Doxorubicin (DOX) and Daunorubicin (DNR). ZnO nanoparticles were prepared by standard precipitation method. The measurement of optical band gap using UV-Visible Diffuse Reflectance Spectroscopy (DRS) analysis reveals the lowering of ZnO band gap after the drug loading. Crystallite size of free and drug loaded ZnO nanoparticles were determined using X-ray Diffraction (XRD) analysis. The crystallite size of ZnO nanoparticles increases after the drug loading. Both the techniques confirm the adsorption of drug molecules on ZnO surface.The present study aims at the development and characterization of zinc oxide (ZnO) nanoparticles as a carrier for various anti-cancerous drugs viz. 5-Fluorouracil (5-FU), Doxorubicin (DOX) and Daunorubicin (DNR). ZnO nanoparticles were prepared by standard precipitation method. The measurement of optical band gap using UV-Visible Diffuse Reflectance Spectroscopy (DRS) analysis reveals the lowering of ZnO band gap after the drug loading. Crystallite size of free and drug loaded ZnO nanoparticles were determined using X-ray Diffraction (XRD) analysis. The crystallite size of ZnO nanoparticles increases after the drug loading. Both the techniques confirm the adsorption of drug molecules on ZnO surface.