Shengliang Peng, Hanyu Jiang, Huaxia Wang, H. Alwageed, Yu-dong Yao
{"title":"基于卷积神经网络的调制分类深度学习模型","authors":"Shengliang Peng, Hanyu Jiang, Huaxia Wang, H. Alwageed, Yu-dong Yao","doi":"10.1109/WOCC.2017.7929000","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) is a powerful classification technique that has great success in many application domains. However, its usage in communication systems has not been well explored. In this paper, we address the issue of using DL in communication systems, especially for modulation classification. Convolutional neural network (CNN) is utilized to complete the classification task. We convert the raw modulated signals into images that have a grid-like topology and feed them to CNN for network training. Two existing approaches, including cumulant and support vector machine (SVM) based classification algorithms, are involved for performance comparison. Simulation results indicate that the proposed CNN based modulation classification approach achieves comparable classification accuracy without the necessity of manual feature selection.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Modulation classification using convolutional Neural Network based deep learning model\",\"authors\":\"Shengliang Peng, Hanyu Jiang, Huaxia Wang, H. Alwageed, Yu-dong Yao\",\"doi\":\"10.1109/WOCC.2017.7929000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) is a powerful classification technique that has great success in many application domains. However, its usage in communication systems has not been well explored. In this paper, we address the issue of using DL in communication systems, especially for modulation classification. Convolutional neural network (CNN) is utilized to complete the classification task. We convert the raw modulated signals into images that have a grid-like topology and feed them to CNN for network training. Two existing approaches, including cumulant and support vector machine (SVM) based classification algorithms, are involved for performance comparison. Simulation results indicate that the proposed CNN based modulation classification approach achieves comparable classification accuracy without the necessity of manual feature selection.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7929000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7929000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation classification using convolutional Neural Network based deep learning model
Deep learning (DL) is a powerful classification technique that has great success in many application domains. However, its usage in communication systems has not been well explored. In this paper, we address the issue of using DL in communication systems, especially for modulation classification. Convolutional neural network (CNN) is utilized to complete the classification task. We convert the raw modulated signals into images that have a grid-like topology and feed them to CNN for network training. Two existing approaches, including cumulant and support vector machine (SVM) based classification algorithms, are involved for performance comparison. Simulation results indicate that the proposed CNN based modulation classification approach achieves comparable classification accuracy without the necessity of manual feature selection.