{"title":"不同杂交向日葵种子、产量和品质的杂种优势","authors":"M. Abdel-Rahem, T. H. Hassan, H. Zahran","doi":"10.1051/OCL/2021010","DOIUrl":null,"url":null,"abstract":"Twenty-one hybrids of sunflower were produced by crossing 7 introduced cytoplasmic male sterile lines (CMS-lines) with 3 restorer lines (RF-lines) using line × tester mating design. The twenty-one hybrids, three restorers, seven maintainer lines (B-lines) were evaluated. The experiment was conducted in a randomized complete block design of three replications. Mean squares due to genotypes, parents (P), crosses (C), lines (L), testers (T), P vs. C, for stearic acid and line × tester for palmitic acid. The inbred lines and their F1 hybrids differed significantly in their mean values of the traits under study. The variances due to specific combining ability (SCA) were higher than general combining ability (GCA) variances for all the studied traits, showing non-additive type of gene action controlling the traits. Non-additive type of gene action can be utilized for varietal improvement through heterosis breeding. Heterosis values for seed yield plant−1 were positive and highly significant relative to both the parental mean (17.68–72.38%) and the better parent (−2.86–56.842%). Significantly and negative heterosis was recorded in the case of linoleic acid relative to the parental mean (−81.24 to −38.02%) and better parent (−66.24–22.87%). With oleic acid, the heterotic effect ranged from −14.18 to 39.59% (parental mean) and from −15.06 to 38.72% (better parent). Therefore, these results are valuable for the improvement of quantitative as well as qualitative traits in sunflower breeding material to fulfill the edible oil requirements.","PeriodicalId":19440,"journal":{"name":"OCL","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Heterosis for seed, oil yield and quality of some different hybrids sunflower\",\"authors\":\"M. Abdel-Rahem, T. H. Hassan, H. Zahran\",\"doi\":\"10.1051/OCL/2021010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twenty-one hybrids of sunflower were produced by crossing 7 introduced cytoplasmic male sterile lines (CMS-lines) with 3 restorer lines (RF-lines) using line × tester mating design. The twenty-one hybrids, three restorers, seven maintainer lines (B-lines) were evaluated. The experiment was conducted in a randomized complete block design of three replications. Mean squares due to genotypes, parents (P), crosses (C), lines (L), testers (T), P vs. C, for stearic acid and line × tester for palmitic acid. The inbred lines and their F1 hybrids differed significantly in their mean values of the traits under study. The variances due to specific combining ability (SCA) were higher than general combining ability (GCA) variances for all the studied traits, showing non-additive type of gene action controlling the traits. Non-additive type of gene action can be utilized for varietal improvement through heterosis breeding. Heterosis values for seed yield plant−1 were positive and highly significant relative to both the parental mean (17.68–72.38%) and the better parent (−2.86–56.842%). Significantly and negative heterosis was recorded in the case of linoleic acid relative to the parental mean (−81.24 to −38.02%) and better parent (−66.24–22.87%). With oleic acid, the heterotic effect ranged from −14.18 to 39.59% (parental mean) and from −15.06 to 38.72% (better parent). Therefore, these results are valuable for the improvement of quantitative as well as qualitative traits in sunflower breeding material to fulfill the edible oil requirements.\",\"PeriodicalId\":19440,\"journal\":{\"name\":\"OCL\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/OCL/2021010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/OCL/2021010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterosis for seed, oil yield and quality of some different hybrids sunflower
Twenty-one hybrids of sunflower were produced by crossing 7 introduced cytoplasmic male sterile lines (CMS-lines) with 3 restorer lines (RF-lines) using line × tester mating design. The twenty-one hybrids, three restorers, seven maintainer lines (B-lines) were evaluated. The experiment was conducted in a randomized complete block design of three replications. Mean squares due to genotypes, parents (P), crosses (C), lines (L), testers (T), P vs. C, for stearic acid and line × tester for palmitic acid. The inbred lines and their F1 hybrids differed significantly in their mean values of the traits under study. The variances due to specific combining ability (SCA) were higher than general combining ability (GCA) variances for all the studied traits, showing non-additive type of gene action controlling the traits. Non-additive type of gene action can be utilized for varietal improvement through heterosis breeding. Heterosis values for seed yield plant−1 were positive and highly significant relative to both the parental mean (17.68–72.38%) and the better parent (−2.86–56.842%). Significantly and negative heterosis was recorded in the case of linoleic acid relative to the parental mean (−81.24 to −38.02%) and better parent (−66.24–22.87%). With oleic acid, the heterotic effect ranged from −14.18 to 39.59% (parental mean) and from −15.06 to 38.72% (better parent). Therefore, these results are valuable for the improvement of quantitative as well as qualitative traits in sunflower breeding material to fulfill the edible oil requirements.