{"title":"使用新颖高效的基于深度学习的取证框架来保护云应用程序","authors":"Sheena Mohammed, Sridevi Rangu","doi":"10.1142/s0219265923500081","DOIUrl":null,"url":null,"abstract":"Privacy and security are the most concerning topics while using cloud-based applications. Malware detection in cloud applications is important in identifying application malware activity. So, a novel Goat-based Recurrent Forensic Mechanism (GbRFM) is used to detect the attack and provide the attack type in cloud-based applications. At first, the dataset is pre-processed in the hidden phase, and the errorless features are extracted. The proposed model also trains the output of the hidden layer to identify and classify the malware. The wild goat algorithm enhances the identification rate by accurately detecting the attack. Using the NSL-KDD data, the preset research was verified, and the outcomes were evaluated. The performance assessment indicates that the developed model gained a 99.26% accuracy rate for the NSL-KDD dataset. Moreover, to validate the efficiency of the proposed model, the outcomes are compared with other techniques. The comparison analysis proved that the proposed model attained better results.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To Secure the Cloud Application Using a Novel Efficient Deep Learning-Based Forensic Framework\",\"authors\":\"Sheena Mohammed, Sridevi Rangu\",\"doi\":\"10.1142/s0219265923500081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy and security are the most concerning topics while using cloud-based applications. Malware detection in cloud applications is important in identifying application malware activity. So, a novel Goat-based Recurrent Forensic Mechanism (GbRFM) is used to detect the attack and provide the attack type in cloud-based applications. At first, the dataset is pre-processed in the hidden phase, and the errorless features are extracted. The proposed model also trains the output of the hidden layer to identify and classify the malware. The wild goat algorithm enhances the identification rate by accurately detecting the attack. Using the NSL-KDD data, the preset research was verified, and the outcomes were evaluated. The performance assessment indicates that the developed model gained a 99.26% accuracy rate for the NSL-KDD dataset. Moreover, to validate the efficiency of the proposed model, the outcomes are compared with other techniques. The comparison analysis proved that the proposed model attained better results.\",\"PeriodicalId\":53990,\"journal\":{\"name\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265923500081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
To Secure the Cloud Application Using a Novel Efficient Deep Learning-Based Forensic Framework
Privacy and security are the most concerning topics while using cloud-based applications. Malware detection in cloud applications is important in identifying application malware activity. So, a novel Goat-based Recurrent Forensic Mechanism (GbRFM) is used to detect the attack and provide the attack type in cloud-based applications. At first, the dataset is pre-processed in the hidden phase, and the errorless features are extracted. The proposed model also trains the output of the hidden layer to identify and classify the malware. The wild goat algorithm enhances the identification rate by accurately detecting the attack. Using the NSL-KDD data, the preset research was verified, and the outcomes were evaluated. The performance assessment indicates that the developed model gained a 99.26% accuracy rate for the NSL-KDD dataset. Moreover, to validate the efficiency of the proposed model, the outcomes are compared with other techniques. The comparison analysis proved that the proposed model attained better results.
期刊介绍:
The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.