{"title":"生物医学应用的氧化石墨烯","authors":"K. Santhoshkumar, Monami Das Modak, P. Paik","doi":"10.15406/JNMR.2017.05.00136","DOIUrl":null,"url":null,"abstract":"Graphene oxide (GO) is one of the most promising functional materials used in various applications like energy storage (batteries and supercapacitors) sensors, photocatalysis, electronics and in biomedicine. The last 10 years literature on GO for biomedical applications revealed and confirmed the scope of its potential capabilities as biomaterial. GO alone and its modified form with different materials (surface functionalization, immobilization of nanoparticles and composite formation) also proved as a multifunctional candidate for medical biotechnology. A material for its use in biomedical applications must be biocompatible and nontoxic to the living cells.. Although there are some concerns about the toxicity of the GO in specific cases, a dosage range and size effects reported in the literature to use it as a nontoxic materials. In view of all these points, an effort has been made to review and emphasize the scope of GO as a biomedical agent for the applications like targeted drug delivery, cancer theranostics, bioimaging and biosensors etc. Further, potential applications along with the future scope and limitations of GO have also been highlighted in this review.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Graphene Oxide for Biomedical Applications\",\"authors\":\"K. Santhoshkumar, Monami Das Modak, P. Paik\",\"doi\":\"10.15406/JNMR.2017.05.00136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene oxide (GO) is one of the most promising functional materials used in various applications like energy storage (batteries and supercapacitors) sensors, photocatalysis, electronics and in biomedicine. The last 10 years literature on GO for biomedical applications revealed and confirmed the scope of its potential capabilities as biomaterial. GO alone and its modified form with different materials (surface functionalization, immobilization of nanoparticles and composite formation) also proved as a multifunctional candidate for medical biotechnology. A material for its use in biomedical applications must be biocompatible and nontoxic to the living cells.. Although there are some concerns about the toxicity of the GO in specific cases, a dosage range and size effects reported in the literature to use it as a nontoxic materials. In view of all these points, an effort has been made to review and emphasize the scope of GO as a biomedical agent for the applications like targeted drug delivery, cancer theranostics, bioimaging and biosensors etc. Further, potential applications along with the future scope and limitations of GO have also been highlighted in this review.\",\"PeriodicalId\":16465,\"journal\":{\"name\":\"Journal of Nanomedicine Research\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomedicine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/JNMR.2017.05.00136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomedicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/JNMR.2017.05.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graphene oxide (GO) is one of the most promising functional materials used in various applications like energy storage (batteries and supercapacitors) sensors, photocatalysis, electronics and in biomedicine. The last 10 years literature on GO for biomedical applications revealed and confirmed the scope of its potential capabilities as biomaterial. GO alone and its modified form with different materials (surface functionalization, immobilization of nanoparticles and composite formation) also proved as a multifunctional candidate for medical biotechnology. A material for its use in biomedical applications must be biocompatible and nontoxic to the living cells.. Although there are some concerns about the toxicity of the GO in specific cases, a dosage range and size effects reported in the literature to use it as a nontoxic materials. In view of all these points, an effort has been made to review and emphasize the scope of GO as a biomedical agent for the applications like targeted drug delivery, cancer theranostics, bioimaging and biosensors etc. Further, potential applications along with the future scope and limitations of GO have also been highlighted in this review.