建立了影响交通事故参数的灰盒系统辨识模型

IF 2.4 Q2 ENGINEERING, MECHANICAL Nonlinear Engineering - Modeling and Application Pub Date : 2023-01-01 DOI:10.1515/nleng-2022-0218
S. A. Zargari, H. B. Rad
{"title":"建立了影响交通事故参数的灰盒系统辨识模型","authors":"S. A. Zargari, H. B. Rad","doi":"10.1515/nleng-2022-0218","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the gray box method has been used to model traffic accidents for the first time. This work examines the problem of estimating and identifying a single-input single-output state-space system. In this way, the state-space model was used, which has both a black box section (experimental data) and the parameters have been estimated by acquiring prior knowledge (white box). First, the state-space of the desired system is formed, and the algorithm for estimating the parameters and their convergence and the state vector estimation algorithm are written. In comparison, the system changes from nonlinear to linear. The parameters and prior knowledge are entered from the system. Finally, by implementing the presented method on the data related to the factors affecting accidents in Qazvin (Iran), the accuracy of the presented materials is investigated. The error output shows that initially, the error increased slightly, but then it shows a downward trend, and with the increase in the data, the error tends to zero (0.658). The results also show good fit and optimal accuracy of the model in less processing time.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"5 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a gray box system identification model to estimate the parameters affecting traffic accidents\",\"authors\":\"S. A. Zargari, H. B. Rad\",\"doi\":\"10.1515/nleng-2022-0218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the gray box method has been used to model traffic accidents for the first time. This work examines the problem of estimating and identifying a single-input single-output state-space system. In this way, the state-space model was used, which has both a black box section (experimental data) and the parameters have been estimated by acquiring prior knowledge (white box). First, the state-space of the desired system is formed, and the algorithm for estimating the parameters and their convergence and the state vector estimation algorithm are written. In comparison, the system changes from nonlinear to linear. The parameters and prior knowledge are entered from the system. Finally, by implementing the presented method on the data related to the factors affecting accidents in Qazvin (Iran), the accuracy of the presented materials is investigated. The error output shows that initially, the error increased slightly, but then it shows a downward trend, and with the increase in the data, the error tends to zero (0.658). The results also show good fit and optimal accuracy of the model in less processing time.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究首次将灰盒方法应用于交通事故建模。这项工作研究了估计和识别单输入单输出状态空间系统的问题。在这种情况下,使用状态空间模型,该模型既有黑箱部分(实验数据),也有通过获取先验知识(白盒)估计参数的状态空间模型。首先,建立了期望系统的状态空间,编写了参数估计及其收敛算法和状态向量估计算法;相比之下,系统由非线性变为线性。参数和先验知识由系统输入。最后,通过对伊朗Qazvin事故影响因素的相关数据实施所提出的方法,对所提出材料的准确性进行了研究。从误差输出可以看出,一开始误差略有增加,之后呈下降趋势,随着数据的增加,误差趋于零(0.658)。结果表明,该模型在较短的处理时间内具有较好的拟合效果和较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a gray box system identification model to estimate the parameters affecting traffic accidents
Abstract In this study, the gray box method has been used to model traffic accidents for the first time. This work examines the problem of estimating and identifying a single-input single-output state-space system. In this way, the state-space model was used, which has both a black box section (experimental data) and the parameters have been estimated by acquiring prior knowledge (white box). First, the state-space of the desired system is formed, and the algorithm for estimating the parameters and their convergence and the state vector estimation algorithm are written. In comparison, the system changes from nonlinear to linear. The parameters and prior knowledge are entered from the system. Finally, by implementing the presented method on the data related to the factors affecting accidents in Qazvin (Iran), the accuracy of the presented materials is investigated. The error output shows that initially, the error increased slightly, but then it shows a downward trend, and with the increase in the data, the error tends to zero (0.658). The results also show good fit and optimal accuracy of the model in less processing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
3.60%
发文量
49
审稿时长
44 weeks
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Study of time-fractional delayed differential equations via new integral transform-based variation iteration technique Convolutional neural network for UAV image processing and navigation in tree plantations based on deep learning Nonlinear adaptive sliding mode control with application to quadcopters Equilibrium stability of dynamic duopoly Cournot game under heterogeneous strategies, asymmetric information, and one-way R&D spillovers A versatile dynamic noise control framework based on computer simulation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1