基于支持向量机和深度神经网络的路面状况估计的比较研究

Dae Jung Kim, Jin Sung Kim, Seung-Hi Lee, C. Chung
{"title":"基于支持向量机和深度神经网络的路面状况估计的比较研究","authors":"Dae Jung Kim, Jin Sung Kim, Seung-Hi Lee, C. Chung","doi":"10.1109/ITSC.2019.8916965","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comparative study of two machine learning methods to estimate the road surface condition without directly estimating tire-road friction coefficient. It is well known that using either a vehicle model-based approach or an end-to-end artificial intelligent method is not satisfactory to estimate the tire-road friction coefficient due to sensor noise, parameter uncertainty, and disturbances. To cope with this problem, three feature vectors obtained based on the vehicle dynamics are utilized for support vector machine (SVM) and deep neural network (DNN) with a time-window approach. The effectiveness of the proposed method is verified using experimental data obtained with a test vehicle on proving grounds. From the experimental study, we observed that the road surface condition estimation using DNN is superior to that using SVM.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"2 1","pages":"1066-1071"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Comparative Study of Estimating Road Surface Condition Using Support Vector Machine and Deep Neural Networ\",\"authors\":\"Dae Jung Kim, Jin Sung Kim, Seung-Hi Lee, C. Chung\",\"doi\":\"10.1109/ITSC.2019.8916965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a comparative study of two machine learning methods to estimate the road surface condition without directly estimating tire-road friction coefficient. It is well known that using either a vehicle model-based approach or an end-to-end artificial intelligent method is not satisfactory to estimate the tire-road friction coefficient due to sensor noise, parameter uncertainty, and disturbances. To cope with this problem, three feature vectors obtained based on the vehicle dynamics are utilized for support vector machine (SVM) and deep neural network (DNN) with a time-window approach. The effectiveness of the proposed method is verified using experimental data obtained with a test vehicle on proving grounds. From the experimental study, we observed that the road surface condition estimation using DNN is superior to that using SVM.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"2 1\",\"pages\":\"1066-1071\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8916965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了两种机器学习方法的比较研究,在不直接估计轮胎-道路摩擦系数的情况下估计路面状况。众所周知,由于传感器噪声、参数不确定性和干扰,使用基于车辆模型的方法或端到端人工智能方法都不能令人满意地估计轮胎-道路摩擦系数。为了解决这一问题,将基于车辆动力学获得的三个特征向量分别用于支持向量机(SVM)和深度神经网络(DNN),并采用时间窗方法。利用试验场试验车辆的试验数据验证了该方法的有效性。从实验研究中,我们观察到使用DNN的路面状况估计优于使用SVM的路面状况估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study of Estimating Road Surface Condition Using Support Vector Machine and Deep Neural Networ
In this paper, we present a comparative study of two machine learning methods to estimate the road surface condition without directly estimating tire-road friction coefficient. It is well known that using either a vehicle model-based approach or an end-to-end artificial intelligent method is not satisfactory to estimate the tire-road friction coefficient due to sensor noise, parameter uncertainty, and disturbances. To cope with this problem, three feature vectors obtained based on the vehicle dynamics are utilized for support vector machine (SVM) and deep neural network (DNN) with a time-window approach. The effectiveness of the proposed method is verified using experimental data obtained with a test vehicle on proving grounds. From the experimental study, we observed that the road surface condition estimation using DNN is superior to that using SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1