在热平衡模式下快速热处理硅化镍的形成

V. Pilipenko, J. Solovjov, P. Gaiduk
{"title":"在热平衡模式下快速热处理硅化镍的形成","authors":"V. Pilipenko, J. Solovjov, P. Gaiduk","doi":"10.29235/1561-8323-2021-65-1-111-118","DOIUrl":null,"url":null,"abstract":"The formation of nickel silicide layers on (111)-Si substrates during rapid thermal annealing in the heat balance mode was studied by the Rutherford backscattering method, X-ray diffraction, transmission electron microscopy, and electrophysical measurements. Nickel films of about 70 nm thickness were deposited by magnetron sputtering at room temperature. The rapid thermal treatment was carried out in a heat balance mode by irradiating the substrates backside with a non-coherent light flux of quartz halogen lamps in the nitrogen medium for 7 seconds up to the temperature range of 200 to 550 °C. The redistribution of nickel and silicon atoms to monosilicide NiSi composition starts already at a temperature of 300 °С and almost ends at a temperature of 400 °С. In the same temperature range, the orthorhombic NiSi phase with an average grain size of about 0.05–0.1 μm is formed. At a rapid thermal treatment temperature of 300 °C, two phases of silicides (Ni2 Si and NiSi) are formed, while a thin layer of unreacted Ni is retained on the surface. This fact can be explained by the high heating rate at the initial annealing stage, at which the temperature conditions of the NiSi phase formation occur earlier than the entire Ni layer manages to turn into the Ni2 Si phase. The layers with a simultaneous presence of three phases are characterized by a high roughness of the silicide-silicon interface. The dependence of the specific resistivity of nickel silicide layers shows an increase to the values of 26–30 μOhm · cm in the range of rapid thermal treatment temperatures of 200–250 °C and a subsequent decrease to the values of about 15 μOhm · cm at a rapid thermal treatment temperature of 400 °C. This value of specific resistivity is characteristic of the high conductivity of the NiSi phase and correlates well with the results of structure studies.","PeriodicalId":11283,"journal":{"name":"Doklady of the National Academy of Sciences of Belarus","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel silicide formation with rapid thermal treatment in the heat balance mode\",\"authors\":\"V. Pilipenko, J. Solovjov, P. Gaiduk\",\"doi\":\"10.29235/1561-8323-2021-65-1-111-118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of nickel silicide layers on (111)-Si substrates during rapid thermal annealing in the heat balance mode was studied by the Rutherford backscattering method, X-ray diffraction, transmission electron microscopy, and electrophysical measurements. Nickel films of about 70 nm thickness were deposited by magnetron sputtering at room temperature. The rapid thermal treatment was carried out in a heat balance mode by irradiating the substrates backside with a non-coherent light flux of quartz halogen lamps in the nitrogen medium for 7 seconds up to the temperature range of 200 to 550 °C. The redistribution of nickel and silicon atoms to monosilicide NiSi composition starts already at a temperature of 300 °С and almost ends at a temperature of 400 °С. In the same temperature range, the orthorhombic NiSi phase with an average grain size of about 0.05–0.1 μm is formed. At a rapid thermal treatment temperature of 300 °C, two phases of silicides (Ni2 Si and NiSi) are formed, while a thin layer of unreacted Ni is retained on the surface. This fact can be explained by the high heating rate at the initial annealing stage, at which the temperature conditions of the NiSi phase formation occur earlier than the entire Ni layer manages to turn into the Ni2 Si phase. The layers with a simultaneous presence of three phases are characterized by a high roughness of the silicide-silicon interface. The dependence of the specific resistivity of nickel silicide layers shows an increase to the values of 26–30 μOhm · cm in the range of rapid thermal treatment temperatures of 200–250 °C and a subsequent decrease to the values of about 15 μOhm · cm at a rapid thermal treatment temperature of 400 °C. This value of specific resistivity is characteristic of the high conductivity of the NiSi phase and correlates well with the results of structure studies.\",\"PeriodicalId\":11283,\"journal\":{\"name\":\"Doklady of the National Academy of Sciences of Belarus\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady of the National Academy of Sciences of Belarus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2021-65-1-111-118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady of the National Academy of Sciences of Belarus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2021-65-1-111-118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用卢瑟福后向散射法、x射线衍射、透射电镜和电物理测量等方法研究了(111)-Si衬底在热平衡模式下快速退火过程中硅化镍层的形成。采用磁控溅射法制备了厚度约70 nm的镍薄膜。在热平衡模式下,用石英卤素灯的非相干光通量在氮气介质中照射衬底背面7秒,温度范围为200 ~ 550°C。镍和硅原子重新分配到单硅化物NiSi组成已经在300°С开始,几乎在400°С结束。在相同的温度范围内,形成平均晶粒尺寸为0.05 ~ 0.1 μm的正交晶相。在300℃的快速热处理温度下,形成了两相硅化物(ni2si和NiSi),同时在表面保留了一层薄薄的未反应的Ni。这一事实可以用初始退火阶段的高升温速率来解释,在此阶段,NiSi相形成的温度条件早于整个Ni层转变为Ni2 Si相。具有三个相同时存在的层的特征是硅-硅界面的高粗糙度。在200 ~ 250℃的快速热处理温度范围内,硅化镍层的比电阻率的依赖性增大到26 ~ 30 μOhm·cm,在400℃的快速热处理温度范围内,比电阻率的依赖性减小到15 μOhm·cm左右。这个比电阻率值是NiSi相高导电性的特征,并且与结构研究的结果有很好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nickel silicide formation with rapid thermal treatment in the heat balance mode
The formation of nickel silicide layers on (111)-Si substrates during rapid thermal annealing in the heat balance mode was studied by the Rutherford backscattering method, X-ray diffraction, transmission electron microscopy, and electrophysical measurements. Nickel films of about 70 nm thickness were deposited by magnetron sputtering at room temperature. The rapid thermal treatment was carried out in a heat balance mode by irradiating the substrates backside with a non-coherent light flux of quartz halogen lamps in the nitrogen medium for 7 seconds up to the temperature range of 200 to 550 °C. The redistribution of nickel and silicon atoms to monosilicide NiSi composition starts already at a temperature of 300 °С and almost ends at a temperature of 400 °С. In the same temperature range, the orthorhombic NiSi phase with an average grain size of about 0.05–0.1 μm is formed. At a rapid thermal treatment temperature of 300 °C, two phases of silicides (Ni2 Si and NiSi) are formed, while a thin layer of unreacted Ni is retained on the surface. This fact can be explained by the high heating rate at the initial annealing stage, at which the temperature conditions of the NiSi phase formation occur earlier than the entire Ni layer manages to turn into the Ni2 Si phase. The layers with a simultaneous presence of three phases are characterized by a high roughness of the silicide-silicon interface. The dependence of the specific resistivity of nickel silicide layers shows an increase to the values of 26–30 μOhm · cm in the range of rapid thermal treatment temperatures of 200–250 °C and a subsequent decrease to the values of about 15 μOhm · cm at a rapid thermal treatment temperature of 400 °C. This value of specific resistivity is characteristic of the high conductivity of the NiSi phase and correlates well with the results of structure studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical modeling of microclimate of re-waterlogged lands of Belarusian Polesie About two new families of acanthodian fishes (Acanthodii) Effect of VEGF gene polymorphism on the survival of a patient with non-small cell lung cancer Asymptotic method for solving the problem of transition process optimization in a three-tempo singularly perturbed system Composite coatings of poly(methyl methacrylate) with silicon dioxide nanoparticles for capacitive sensors of nickel content control in water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1