{"title":"利用自然语言处理和微任务众包创建并验证学术知识图谱。","authors":"Allard Oelen, Markus Stocker, Sören Auer","doi":"10.1007/s00799-023-00360-7","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the growing number of scholarly publications, finding relevant articles becomes increasingly difficult. Scholarly knowledge graphs can be used to organize the scholarly knowledge presented within those publications and represent them in machine-readable formats. Natural language processing (NLP) provides scalable methods to automatically extract knowledge from articles and populate scholarly knowledge graphs. However, NLP extraction is generally not sufficiently accurate and, thus, fails to generate high granularity quality data. In this work, we present TinyGenius, a methodology to validate NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. TinyGenius is employed to populate a paper-centric knowledge graph, using five distinct NLP methods. We extend our previous work of the TinyGenius methodology in various ways. Specifically, we discuss the NLP tasks in more detail and include an explanation of the data model. Moreover, we present a user evaluation where participants validate the generated NLP statements. The results indicate that employing microtasks for statement validation is a promising approach despite the varying participant agreement for different microtasks.</p>","PeriodicalId":50565,"journal":{"name":"Dyna-Colombia","volume":"1 1","pages":"273-285"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208198/pdf/","citationCount":"0","resultStr":"{\"title\":\"Creating and validating a scholarly knowledge graph using natural language processing and microtask crowdsourcing.\",\"authors\":\"Allard Oelen, Markus Stocker, Sören Auer\",\"doi\":\"10.1007/s00799-023-00360-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the growing number of scholarly publications, finding relevant articles becomes increasingly difficult. Scholarly knowledge graphs can be used to organize the scholarly knowledge presented within those publications and represent them in machine-readable formats. Natural language processing (NLP) provides scalable methods to automatically extract knowledge from articles and populate scholarly knowledge graphs. However, NLP extraction is generally not sufficiently accurate and, thus, fails to generate high granularity quality data. In this work, we present TinyGenius, a methodology to validate NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. TinyGenius is employed to populate a paper-centric knowledge graph, using five distinct NLP methods. We extend our previous work of the TinyGenius methodology in various ways. Specifically, we discuss the NLP tasks in more detail and include an explanation of the data model. Moreover, we present a user evaluation where participants validate the generated NLP statements. The results indicate that employing microtasks for statement validation is a promising approach despite the varying participant agreement for different microtasks.</p>\",\"PeriodicalId\":50565,\"journal\":{\"name\":\"Dyna-Colombia\",\"volume\":\"1 1\",\"pages\":\"273-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208198/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dyna-Colombia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00799-023-00360-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyna-Colombia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00799-023-00360-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Creating and validating a scholarly knowledge graph using natural language processing and microtask crowdsourcing.
Due to the growing number of scholarly publications, finding relevant articles becomes increasingly difficult. Scholarly knowledge graphs can be used to organize the scholarly knowledge presented within those publications and represent them in machine-readable formats. Natural language processing (NLP) provides scalable methods to automatically extract knowledge from articles and populate scholarly knowledge graphs. However, NLP extraction is generally not sufficiently accurate and, thus, fails to generate high granularity quality data. In this work, we present TinyGenius, a methodology to validate NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. TinyGenius is employed to populate a paper-centric knowledge graph, using five distinct NLP methods. We extend our previous work of the TinyGenius methodology in various ways. Specifically, we discuss the NLP tasks in more detail and include an explanation of the data model. Moreover, we present a user evaluation where participants validate the generated NLP statements. The results indicate that employing microtasks for statement validation is a promising approach despite the varying participant agreement for different microtasks.
期刊介绍:
The DYNA journal, consistent with the aim of disseminating research in engineering, covers all disciplines within the large area of Engineering and Technology (OECD), through research articles, case studies and review articles resulting from work of national and international researchers.