具有重要采样的多视图环境遮挡

K. Vardis, Georgios Papaioannou, A. Gaitatzes
{"title":"具有重要采样的多视图环境遮挡","authors":"K. Vardis, Georgios Papaioannou, A. Gaitatzes","doi":"10.1145/2448196.2448214","DOIUrl":null,"url":null,"abstract":"Screen-space ambient occlusion and obscurance (AO) techniques have become de-facto methods for ambient light attenuation and contact shadows in real-time rendering. Although extensive research has been conducted to improve the quality and performance of AO techniques, view-dependent artifacts remain a major issue. This paper introduces Multi-view Ambient Occlusion, a generic per-fragment view weighting scheme for evaluating screen-space occlusion or obscurance using multiple, arbitrary views, such as the readily available shadow maps. Additionally, it exploits the resulting weights to perform adaptive sampling, based on the importance of each view to reduce the total number of samples, while maintaining the image quality. Multi-view Ambient Occlusion improves and stabilizes the screen-space AO estimation without overestimating the results and can be combined with a variety of existing screen-space AO techniques. We demonstrate the results of our sampling method with both open volume- and solid angle-based AO algorithms.","PeriodicalId":91160,"journal":{"name":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"36 1","pages":"111-118"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Multi-view ambient occlusion with importance sampling\",\"authors\":\"K. Vardis, Georgios Papaioannou, A. Gaitatzes\",\"doi\":\"10.1145/2448196.2448214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Screen-space ambient occlusion and obscurance (AO) techniques have become de-facto methods for ambient light attenuation and contact shadows in real-time rendering. Although extensive research has been conducted to improve the quality and performance of AO techniques, view-dependent artifacts remain a major issue. This paper introduces Multi-view Ambient Occlusion, a generic per-fragment view weighting scheme for evaluating screen-space occlusion or obscurance using multiple, arbitrary views, such as the readily available shadow maps. Additionally, it exploits the resulting weights to perform adaptive sampling, based on the importance of each view to reduce the total number of samples, while maintaining the image quality. Multi-view Ambient Occlusion improves and stabilizes the screen-space AO estimation without overestimating the results and can be combined with a variety of existing screen-space AO techniques. We demonstrate the results of our sampling method with both open volume- and solid angle-based AO algorithms.\",\"PeriodicalId\":91160,\"journal\":{\"name\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"volume\":\"36 1\",\"pages\":\"111-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2448196.2448214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448196.2448214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

屏幕空间环境遮挡(AO)技术已经成为实时渲染中环境光衰减和接触阴影的实际方法。尽管已经进行了广泛的研究来提高AO技术的质量和性能,但是依赖于视图的工件仍然是一个主要问题。本文介绍了多视图环境遮挡,这是一种通用的逐片段视图加权方案,用于使用多个任意视图(如现成的阴影地图)评估屏幕空间遮挡或遮挡。此外,它利用产生的权重来执行自适应采样,基于每个视图的重要性,以减少样本总数,同时保持图像质量。多视图环境遮挡改善和稳定了屏幕空间AO估计,而不会高估结果,并且可以与各种现有的屏幕空间AO技术相结合。我们用基于开体积和实体角的AO算法演示了我们的采样方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-view ambient occlusion with importance sampling
Screen-space ambient occlusion and obscurance (AO) techniques have become de-facto methods for ambient light attenuation and contact shadows in real-time rendering. Although extensive research has been conducted to improve the quality and performance of AO techniques, view-dependent artifacts remain a major issue. This paper introduces Multi-view Ambient Occlusion, a generic per-fragment view weighting scheme for evaluating screen-space occlusion or obscurance using multiple, arbitrary views, such as the readily available shadow maps. Additionally, it exploits the resulting weights to perform adaptive sampling, based on the importance of each view to reduce the total number of samples, while maintaining the image quality. Multi-view Ambient Occlusion improves and stabilizes the screen-space AO estimation without overestimating the results and can be combined with a variety of existing screen-space AO techniques. We demonstrate the results of our sampling method with both open volume- and solid angle-based AO algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Inverse Spatio-Temporal Crowd Motion Design User-guided 3D reconstruction using multi-view stereo DenseGATs: A Graph-Attention-Based Network for Nonlinear Character Deformation RANDM: Random Access Depth Map Compression Using Range-Partitioning and Global Dictionary The Effect of Lighting, Landmarks and Auditory Cues on Human Performance in Navigating a Virtual Maze
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1